精英家教网 > 初中数学 > 题目详情

【题目】1+2+22+23…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1,仿照以上推理,计算出1+5+52+53+…+52017的值为(  )

A. 52017﹣1 B. 52018﹣1 C. D.

【答案】C

【解析】分析:观察题目中所给的推理方法:可以发现,当乘方的底数为2的时候,把原式乘上2,再与原式相减即可得出答案;因此当乘方中底数为5,把原式乘上5,得到与原式类似的式子,再减去原式即可得到答案.据此解决.

详解:设S=1+5+52+53+…+52017

5S=5+52+53+54+…+52018,即5S﹣S=52018﹣1,

S=

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)阅读下面材料:

点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.

当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,

①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.

(2)回答下列问题:

①数轴上表示2和5的两点之间的距离是  ,数轴上表示﹣2和﹣5的两点之间的距离是  ,数轴上表示1和﹣3的两点之间的距离是  

②数轴上表示x和﹣1的两点A和B之间的距离是  ,如果|AB|=2,那么x为  

③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是  

④解方程|x+1|+|x﹣2|=5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(

A.,0) B.(1,0) C.,0) D.,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为奖励学习之星,准备在某商店购买AB两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.

1)求一件A种文具的价格;

2)根据需要,该校准备在该商店购买AB两种文具共150件.

①求购买AB两种文具所需经费W与购买A种文具的件数a之间的函数关系式;

②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC平分∠DAB,ABD=52°,ABC=116°,ACB=α°,则∠BDC的度数为(  )

A. α B. C. 90﹣α D. 90﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣,0),点B的坐标为(0,3).

(1)求过A,B两点直线的函数表达式;

(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=8,A=60°,ADC=150°,四边形ABCD的周长为32.

(1)求∠BDC的度数;

(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知:点A和点B(如图1),根据条件画图(用三角板和量角器):

①画射线BA

②画∠ABC90°,使得点C在线段AB上方且ABBC

③连接AC,画出∠ABC的角平分线BD,交ACD.通过观察、度量、猜想获得线段BDAC的关系.

2)已知:如图2,∠AOB150OC平分∠AOBAODO,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

同步练习册答案