精英家教网 > 初中数学 > 题目详情
31、如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S1、S2、S3,请你探索S1、S2、S3之间的关系并说明理由.
分析:先过A作AE∥BC,交CD于E,由于AB∥CD,AE∥BC,易证四边形ABCE是平行四边形,从而有AE=BC,CE=AB,而DC=2AB,易得DE=AB,又由于AE∥BC,那么∠1=∠BCD,而∠ADC+∠BCD=90°,易得∠ADC+∠1=90°,根据三角形内角和定理可求∠DAE=90°,利用勾股定理可得DE2=AD2+AE2,进而有AB2=AD2+BC2,那么S2=S1+S3
解答:解:S1、S2、S3之间的关系是S2=S1+S3
过A作AE∥BC,交CD于E,
∵AB∥CD,AE∥BC,
∴四边形ABCE是平行四边形,
∴AE=BC,CE=AB,
∵DC=2AB,
∴DE=AB,
∵AE∥BC,
∴∠1=∠BCD,
又∵∠ADC+∠BCD=90°,
∴∠ADC+∠1=90°,
∴∠DAE=90°,
在Rt△EAD中,由勾股定理,得DE2=AD2+AE2
即AB2=AD2+BC2
∴S2=S1+S3
点评:本题考查了平行四边形的判定和性质、直角三角形的判定、勾股定理.解题的关键是作辅助线AE,构造平行四边形和直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案