【题目】如图,点D在边BC上,∠C+∠BAD=∠DAC,过D作DE⊥AB于E,,则线段AC的长为_____.
【答案】
【解析】
如图,作∠DAH=∠DAE,交BC于H,过点D作DF⊥AH于F,过点A作AG⊥BC于G,根据角平分线的性质可得DE=DF,AE=AF,由∠C+∠BAD=∠DAC可得∠HAC=∠C,即可证明AH=CH,设DE=4x,根据,利用勾股定理可求出DF、AF的长,设FH=y,在Rt△DFH中,利用勾股定理列方程可求出y值,即可求出DH的长,利用面积法可求出AG的长,利用勾股定理可求出DG的长,即可求出CG的长,利用勾股定理求出AC的长即可得答案.
如图,作∠DAH=∠DAE,交BC于H,过点D作DF⊥AH于F,过点A作AG⊥BC于G,
∵DE⊥AB,
∴DE=DH,AE=AF,
设DE=4x,
∵,
∴AE=7x,
∵AD=,AE2+AE2=AD2,
∴(4x)2+(7x)2=65,
解得:x=1,(负值舍去)
∴DE=4,AE=7,
∴DF=DE=4,DF=AE=7,
∵∠C+∠BAD=∠DAC,∠DAC=∠DAH+∠HAC,
∴∠HAC=∠C,
∴AH=CH,
设FH=y,
∴CH=AH=AF+FH=7+y,
∵CD=13,
∴DH=CD-CH=6-y,
在Rt△DFH中,DF2+FH2=DH2,即42+y2=(6-y)2,
解得:y=,
∴DH=6-=,CH=AH=7+=,
∴S△ADH=DH·AG=AH·DF,即·AG=×4,
解得:AG=8,
∴DG==1,
∴CG=CD-DG=12,
∴AC==.
故答案为:
科目:初中数学 来源: 题型:
【题目】某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是 ;
(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;
(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC是等边三角形,四边形ACFE是平行四边形,AE=BC.
(1)如图①,求证:ACFE是菱形;
(2)如图②,点D是△ABC内一点,且∠ADB=90°,∠EDC=90°,∠ABD=∠ACE.求证:ACFE是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否一定成立?说出你的理由;
②在如图2所示的直角坐标系中抛物线y=ax2+x+c经过A、D两点,当点E滑动到某处时,点F恰好落在此抛物线上,求此时点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为提倡节约用水,准备实行自来水阶梯计算方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为了更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次抽样调查的样本容量是___________
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区10万用户中约有多少用户的用水全部享受基本价格?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AH⊥BC,垂足为H,D为直线BC上一动点(不与点B、C重合),在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)求证:BD=CE;
(2)若点D在线段BC上,问点D运动到何处时,AC⊥DE?请说明理由;
(3)当CE∥AB时,若△ABD中最小角为20°,试探究∠ADB的度数.(直接写出结果,无需写出求解过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com