精英家教网 > 初中数学 > 题目详情

已知,在△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC于点M.
(1)如图1,当点E在线段AC上时,点D在AB的延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图2,当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
(3)如图3,当点E在CA的延长线上,点D在线段AB上(点D不与A、B重合),DE所在直线与直线BC交于点M,若CE=mBD,(m>1),请直接写出线段MD与线段ME的数量关系.

(1)DM=EM;
证明:过点E作EF∥AB交BC于点F,
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,∴∠EFC=∠C,
∴EF=EC.又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∴△DBM≌△EFM,∴DM=EM.

(2)成立;
证明:过点E作EF∥AB交CB的延长线于点F,
∵AB=AC,∴∠ABC=∠C;
又∵EF∥AB,∴∠ABC=∠EFC,
∴∠EFC=∠C,∴EF=EC.
又∵BD=EC,∴EF=BD.
又∵EF∥AB,∴∠ADM=∠MEF.
在△DBM和△EFM中
∴△DBM≌△EFM;∴DM=EM;
(3)过点E作EF∥AB交CB的延长线于点F,
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:m,

分析:(1)DM=EM;过点E作EF∥AB交BC于点F,然后利用平行线的性质和已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(2)成立;过点E作EF∥AB交CB的延长线于点F,然后利用平行线的性质与已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(3).过点E作EF∥AB交CB的延长线于点F,然后利用平行线的性质和已知条件得到△DBM∽△EFM,接着利用相似三角形的性质即可得到结论;
点评:此题主要考查了全等三角形的性质与判定,也利用了等腰三角形的性质和相似三角形的判定与性质,有一定的综合性,对于学生的能力要求比较高,平时加强训练.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案