精英家教网 > 初中数学 > 题目详情
如图,已知CD为⊙O的直径,点A为DC延长线上一点,B为⊙O上一点,且∠ABC=∠D.
(1)求证:AB为⊙O的切线;
(2)若tanD=
12
,求sinA的值.
分析:(1)连结OB,根据圆周角定理得到∠BDC=90°,即∠OBD+∠OBC=90°,而∠D=∠OBD,∠ABC=∠D,则∠ABC=∠OBD,所以∠OBA=90°,于是可根据切线的判定定理得到结论;
(2)设BC=x,利用正切的定义得到BD=2x,根据勾股定理得到CD=
5
x,则OB=OC=
5
2
x,易证得△ABC∽△ADB,利用相似比可得AB=2AC,在Rt△OAB中,根据勾股定理得到AC=
5
3
x,然后根据正弦的定义求解.
解答:(1)证明:连结OB,如图,
∵CD为⊙O的直径,
∴∠BDC=90°,即∠OBD+∠OBC=90°
∵OB=OD,
∴∠D=∠OBD,
∵∠ABC=∠D,
∴∠ABC=∠OBD,
∴∠OBA=90°,
∴OB⊥AB,
∴AB为⊙O的切线;

(2)解:设BC=x,
在Rt△BCD中,tanD=
BC
BD
=
1
2

∴BD=2x,
∴CD=
BD2+BC2
=
5
x,
∴OB=OC=
5
2
x,
∵∠ABC=∠D,∠BAC=∠DAB,
∴△ABC∽△ADB,
AC
AB
=
BC
BD
=
1
2

∴AB=2AC,
在Rt△OAB中,∵OB2+AB2=AO2
∴(
5
2
x)2+(2AC)2=(
5
2
x+AC)2
∴AC=
5
3
x,
∴OA=
5
2
x+
5
3
x=
5
5
6
x,
∴sinA=
OB
OA
=
5
x
2
5
5
x
6
=
3
5
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及锐角三角函数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是(  )
A、50°B、40°C、30°D、25°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知CD为⊙O的直径,过点D的弦DB平行于半径OA,若∠C=20°,则∠D的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠CDB的度数是40°,则∠C的度数是(  )

查看答案和解析>>

同步练习册答案