精英家教网 > 初中数学 > 题目详情
如图:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD、FE分别交AC,BC于点D,E两点,给出以下个结论:
①CD=BE  
②四边形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四边形CDFE=
12
S△ABC
.当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),
上述结论中始终正确的有
①③④
①③④
分析:首先连接CF,由等腰直角三角形的性质可得:∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=
1
2
S△ABC,问题得解.
解答:解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=
1
2
S△ABC,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.
点评:此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案