精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,P是边BC的中点,PD⊥AB,PE⊥AC,垂足分别为D、E
(1)求证:PD=PE;
(2)DE与BC平行吗?请说明理由;
(3)请添加一个条件,使四边形ADPE为正方形,并加以证明.

(1)证明:∵AB=AC,
∴∠B=∠C,
∵PD⊥AB,PE⊥AC,
∴∠PDB=∠PEC=90°,
∵P是BC的中点,
∴BP=PC,
即∠BDP=∠PEC=90°,∠B=∠C,PB=PC,
∴△PDB≌△PEC,
∴PD=PE.

(2)答:DE∥BC,
理由是:∵△PDB≌△PEC,
∴BD=CE,
∵AB=AC,
=
∴DE∥BC.

(3)答:当∠A=90°时,使四边形ADPE为正方形,
证明:∵∠A=∠ADP=∠AEP=90°,
∴四边形ADPE是矩形,
∵AB=AC,BD=CE,
∴AD=AE,
∴矩形ADPE是正方形,
即当∠A=90°时,使四边形ADPE为正方形.
分析:(1)根据AAS证△PDB≌△PEC即可;
(2)根据全等证出BD=CE,得到=,即可推出答案;
(3)证四边形是矩形,证AD=AE即可推出答案.
点评:本题主要考查对矩形的判定,等腰三角形的性质,平行线的判定,正方形的判定,全等三角形的性质和判定等知识点的连接和掌握,熟练地运用性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案