精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠ACB90°,∠A30°BC3cm,动点P从点A出发,沿AB方向以每秒2cm的速度向终点B运动;同时,动点Q从点B出发沿BC力向以每秒1cm的速度向终点C运动,将PQC翻折,点P的对应点为R,设点Q运动的时间为t秒,若四边形PCRQ为菱形,则t的值为(  )

A. B. 2C. 1D.

【答案】C

【解析】

PEBCE,根据菱形的性质得到QE=EC,根据直角三角形的性质得到AB=6cm,根据平行线分线段成比例定理得到比例式,解出x的值即可.

PEBCE

∵四边形PCRQ为菱形,∴QE=EC=3t).

∵∠ACB=90°,∠A=30°,BC=3cm,∴AB=6cm,∴BP=62t

PEBC,∠ACB=90°,∴PEAC,∴,即,解得:t=1

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.

(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).

(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记APQ的面积为S.求S与t之间的函数关系式.

(3)过点Q作QRAB,交AD于点R,连结BR,如图.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.

(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′BC时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点AD为圆心,以大于的长为半径在AD的两侧作弧,交于两点MN;第二步,连结MN,分别交ABAC于点EF;第三步,连结DEDF..若BD=6AF=4CD=3,则BE的长是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1、P2、P3、P4、P5是△DEF边上的5个格点,请按要求完成下列各题:

(1)试证明△ABC为直角三角形;

(2)判断△ABC和△DEF是否相似,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等边三角形,DF分别为BCAB边上的点,AF=BD,AD为边作等边ΔADE.

(1)求证:AE=CF;

(2)求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数yax+1的图象经过点M23)、N(﹣3b).

1)求一次函数的解析式,并在图中画出函数图象;

2)求直线MNx轴的交点坐标及MON的面积;

3)根据图象直接写出:当x取何值时,一次函数的值小于3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知第一象限内的点A在反比例函数y=的图象上第二象限内的点B在反比例函数y=的图象上OAOB,cosA=k的值为( )

A. -3 B. -4 C. D. -2

查看答案和解析>>

同步练习册答案