精英家教网 > 初中数学 > 题目详情

如图,⊙O的直径AB与弦CD相交于点M,AE⊥CD于E,BF⊥CD于F.若CM=4,MD=3,BF:AE=1:3,则⊙O的半径是________.

4
分析:根据相交弦定理可得AM×MB=CM×MD=12,由BF:AE=1:3,可得BM:MA=1:3,从而求出AM、MB的值,得出直径AB的长度,即可求出⊙O的半径.
解答:由题意得,AM×MB=CM×MD=12①,
∵AE⊥CD,BF⊥CD,
∴AE∥BF,
∴BM:AM=BF:AE=1:3②,
联合①②可得:AM=6,BM=2,
∴AB=AM+MB=8,
∴⊙O的半径是4.
故答案为:4.
点评:本题考查了相交弦定理,解答本题的关键是掌握相交弦定理的内容,属于基础题,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案