精英家教网 > 初中数学 > 题目详情

如图,已知∠ACB=88°,过C作CD∥AB.若∠ECD=48°,则∠B=________.

44°
分析:由CD与AB平行,利用两直线平行同位角相等及内错角相等得到两对角相等,再由∠ACB=88°,求出邻补角∠ECB的度数,由∠ECB-∠ECD求出∠BCD的度数,即为∠B的度数.
解答:∵∠ACB=88°,
∴∠ECB=∠ECD+∠BCD=92°,
∵CD∥AB,∠ECD=48°,
∴∠ECD=∠A=48°,∠BCD=∠B,
∴∠B=∠BCD=∠ECB-∠ECD=92°-48°=44°.
故答案为:44°
点评:此题考查了平行线的性质,平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知∠ACB=∠CBD=90°,BC=a,AC=b,当CD=(  )时,△CDB∽△ABC.
A、
a2
b
B、
b2
a
C、
b
a
a2+b2
D、
a
b
a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知∠ACB是⊙O的圆周角,∠ACB=40°,则圆心角∠AOB=
80
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD,还需要添加一个条件,这个条件可以是
AC=BD
AC=BD
BC=AD
BC=AD
∠ABC=∠BAD
∠ABC=∠BAD
∠CAB=∠DBA
∠CAB=∠DBA

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在边AB上,AC交DE于点G,则线段FG的长为
5
3
2
5
3
2
cm(保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠1=35°.
①求∠B的度数;   
②求证:AB∥CD.

查看答案和解析>>

同步练习册答案