分析 三角形的重心是三角形三边中线的交点,由此可得△ABD的面积与△ACD的面积相等;根据重心到顶点的距离与重心到对边中点的距离之比为2:1,可得△CDG的面积等于△ACD面积的三分之一.
解答 解:∵点G为△ABC的重心,
∴△ABD的面积与△ACD的面积相等,且DG=$\frac{1}{3}$AD,
∴△CDG的面积等于△ACD面积的$\frac{1}{3}$,
∴△CDG的面积等于△ABD面积的$\frac{1}{3}$,即S△CDG:S△ABD=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.
点评 本题主要考查了三角形重心性质的运用,解题时注意:三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com