【题目】如图1,抛物线,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.
(1)求抛物线的解析式;
(2)在x轴上方的抛物线上是否存在点M,是S△ABM=S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.
①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;
②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).
【答案】(1);(2)点M的坐标为(9,4)或(﹣1,4);(3)①AF=BE,∠APB=120°;②或.
【解析】解:(1)根据题意,可设抛物线的解析式为y=ax2+bx+.
∵将点A、B的坐标代入得: 解得:a=,b=﹣2,
∴抛物线的解析式为y=x2﹣2x+.
(2)存在点M,使得S△AMB=S△ABC.
理由:如图所示:过点C作CK⊥x轴,垂足为K.
∵△ABC为等边三角形,
∴AB=BC=AC=6,∠ACB=60°.
∵CK⊥AB,
∴KA=BK=3,∠ACK=30°.
∴CK=3.
∴S△ABC=ABCK=×6×3=9.
∴S△ABM=×=12.
设M(a,a2﹣2a+).
∴AB|yM|=12,即×6×(a2﹣2a+)=12.
解得=9, =﹣1.
∴M1(9,4),M2(﹣1,4).
(3)①结论:AF=BE,∠APB=120°.
理由:如图所示;
∵△ABC为等边三角形,
∴BC=AB,∠C=∠ABF.
∵在△BEC和△AFB中, ,
∴△BEC≌△AFB.
∴AF=BE,∠CBE=∠BAF.
∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.
∴∠APB=180°﹣∠PAB﹣∠ABP=180°﹣60°=120°.
②点P经过的路径长为或3.
科目:初中数学 来源: 题型:
【题目】如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.
①△BCE≌△ACD;
②CF=CH;
③△CFH为等边三角形;
④FH∥BD;
⑤AD与BE的夹角为60°,
以上结论正确的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,高铁列车座位后面的小桌板收起时可以近似地看作与地面垂直,展开小桌板后,桌面会保持水平.如图的实线是小桌板展开后的示意图,其中OB表示小桌面的宽度,BC表示小桌板的支架.连接OA,此时OA=75厘米,∠AOB=∠ACB=37°,且支架长BC与桌面宽OB的长度之和等于OA的长度,求点B到AC的距离.(参考数据: , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从气象台获悉“本市明天降水概率是80%”,对此信息,下面几种说法正确的是( )
A. 本市明天将有80%的地区降水 B. 本市明天将有80%的时间降水
C. 明天肯定下雨 D. 明天降水的可能性大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com