【题目】在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
【答案】
(1)
解:当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,
解得:x1=﹣3,x2=1,
∵A在B的左侧,
∴A(﹣3,0),B(1,0).
当y=﹣x2﹣2x+3中x=0时,则y=3,
∴C(0,3).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点D(﹣1,4)
(2)
解:作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.
∵C(0,3),
∴C′(0,﹣3).
设直线C′D的解析式为y=kx+b,
则有 ,解得: ,
∴直线C′D的解析式为y=﹣7x﹣3,
当y=﹣7x﹣3中y=0时,x=﹣ ,
∴当△CDE的周长最小,点E的坐标为(﹣ ,0)
(3)
解:设直线AC的解析式为y=ax+c,
则有 ,解得: ,
∴直线AC的解析式为y=x+3.
假设存在,设点F(m,m+3),
△AFP为等腰直角三角形分三种情况(如图2所示):
①当∠PAF=90°时,P(m,﹣m﹣3),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴﹣m﹣3=﹣m2﹣2m+3,
解得:m1=﹣3(舍去),m2=2,
此时点P的坐标为(2,﹣5);
②当∠AFP=90°时,P(2m+3,0)
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣(2m+3)2﹣2×(2m+3)+3,
解得:m3=﹣3(舍去),m4=﹣1,
此时点P的坐标为(1,0);
③当∠APF=90°时,P(m,0),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣m2﹣2m+3,
解得:m5=﹣3(舍去),m6=1,
此时点P的坐标为(1,0).
综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0)
【解析】(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.
科目:初中数学 来源: 题型:
【题目】我们把分子为1的分数叫做单位分数,如, , ,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如, , ,…
(1)根据对上述式子的观察,你会发现,则a=________,b=________;
(2)进一步思考,单位分数(n是不小于2的正整数),则x=________(用n的代数式表示)
(3)计算: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题: 学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2 =(1+)2, 我们来进行以下的探索:
设a+b=(m+n)2(其中a,b,m,n都是正整数),则有a+b=m2+2n2+2mn,∴a=m+2n2 , b=2mn, 这样就得出了把类似a+b的式子化为平方式的方法.
请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a﹣b=(m﹣n)2 , 用含m,n的式子分别表示a,b,得a=________,b=________;
(2)利用上述方法,找一组正整数a,b,m,n填空:___﹣_____=(____﹣_____)2
(3)a﹣4=(m﹣n)2且a,m,n都为正整数,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图4所示,所有正方形的中心均在坐标原点,且每条边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次用…表示,则顶点A55的坐标是( ).
A. (13,13) B. (-13,-13) C. (14,14) D. (-14,-14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标。
(2)求出S△ABC
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣ x2﹣3x﹣ ,设自变量的值分别为x1 , x2 , x3 , 且﹣3<x1<x2<x3 , 则对应的函数值y1 , y2 , y3的大小关系是( )
A.y1>y2>y3
B.y1<y2<y3
C.y2>y3>y1
D.y2<y3<y1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.
(1)求∠EFD的度数;
(2)判断FE与FD之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.
(1)求此抛物线的解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣ ,顶点坐标为(﹣ , )].
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com