精英家教网 > 初中数学 > 题目详情
2.若一个角的补角的$\frac{1}{3}$比这个角的余角大20°,求这个角.

分析 利用一个角的余角和补角的确定方法,建立方程求解即可.

解答 解:设这个角为α,则它的余角为(90°-α),它的补角为(180°-α),
根据题意得,$\frac{1}{3}$(180°-α)-(90°-α)=20°,
解这个方程得,α=75°
答:这个角为75°.

点评 此题是余角和补角题,主要考查了余角和补角的意义,用方程的思想解决几何问题是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为(  )
A.5cmB.4cmC.$\sqrt{7}$cmD.5cm 或$\sqrt{7}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.
(1)试找出它们的共同点,并证明你的结论;
(2)写出当a=17时,b,c的值.
3,4,5  32+42=52
 5,12,13, 52+122=132
 7,24,25 72+242=252
 9,40,41 92+402=412
 17,b,c 172+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,正方形ABCD的边长为8,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(  )
A.2B.2$\sqrt{2}$C.8-4$\sqrt{2}$D.8$\sqrt{2}$-8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知一个等腰三角形的两边长分别为$\sqrt{18}$和$\sqrt{50}$,则这个等腰三角形的周长为(  )
A.11$\sqrt{2}$B.13$\sqrt{2}$C.11$\sqrt{3}$或$\sqrt{3}$D.11$\sqrt{2}$或13$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.
∵AD∥BC(已知)
∴∠2=∠E(两直线平行,内错角相等)
∵AE平分∠BAD(已知)
∴∠1=∠2 (角平分线的定义)
∴∠1=∠E(等量代换)
∵∠CFE=∠E(已知)
∴∠1=∠CFE
∴AB∥CD(同位角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,下列选项中,不能判断a∥b的是(  )
A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知|a|+|b|=9,且|a|=2,则b的值为±7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.探索:在图1至图2中,已知△ABC的面积为a,
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA;延长边CA到点E,使CA=AE,连接DE;若△DCE的面积为S1,则S1=2a(用含a的代数式表示);
(2)在图1的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF (如图2).若阴影部分的面积为S2,则S2=6a (用含a的代数式表示);
(3)发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图2),此时,我们称△ABC向外扩展了一次.可以发现,扩展n次后得到的三角形的面积是△ABC面积的7n倍(用含n的代数式表示);
(4)应用:某市准备在市民广场一块足够大的空地上栽种牡丹花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种紫色牡丹,然后将△ABC向外扩展二次(如图3).在第一次扩展区域内种黄色牡丹,第二次扩展区域内种紫色牡丹,紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,工程人员在设计时,三角形ABC的面积至多为多少平方米?

查看答案和解析>>

同步练习册答案