分析 连接DE并延长交CB的延长线于H,证明△DAE≌△HBE,得到DE=EH,AD=BH,根据三角形中位线定理证明即可.
解答 解:EF∥AD∥BC,EF=$\frac{1}{2}$(AD+BC)
证明如下:
连接DE并延长交CB的延长线于H,
∵AD∥BC,
∴∠A=∠ABH,
在△DAE和△HBE中,
$\left\{\begin{array}{l}{∠A=∠HBE}\\{AE=BE}\\{∠AED=∠BEH}\end{array}\right.$,
∴△DAE≌△HBE,
∴DE=EH,AD=BH,
∵DE=EH,DF=FC,
∴EF∥BC,EF=$\frac{1}{2}$HC,
∴EF∥AD∥BC,EF=$\frac{1}{2}$(AD+BC).
点评 本题考查的是梯形中位线定理的证明,掌握全等三角形的判定定理和三角形的中位线定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com