精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AE是弦,直线CG与⊙O相切于点C,CG∥AE,CG与BA的延长线交于点G,过点C作CD⊥AB于点D,交AE于点F.
(1)求证:
(2)若∠EAB=30°,CF=a,写出求四边形GAFC周长的思路.

【答案】
(1)证明:连接OC,如图.

∵直线CG与⊙O相切于点C,

∴CG⊥OC.

∵CG∥AE,

∴AE⊥OC.

又∵OC为⊙O的半径,


(2)证明:解:连接AC,如图.

由∠EAB=30°,CG∥AE,可得∠CGB=30°,

又由直线CG与⊙O相切于点C,∠AOC=60°,

可推出△AOC是等边三角形,

由△AOC是等边三角形,∠EAB=30°,CF=a,

可得∠CAF=∠ACF=30°,CF=AF=a,DF=

AD=

利用CG∥AE,可得到△ADF∽△GDC,从而推出AG= a,GC=3a.

故计算出四边形GAFC的周长为5a+ a.


【解析】(1)连接OC,根据切线的性质得到CG⊥OC.根据垂径定理即可得到结论;(2)连接AC,根据平行线的性质得到∠CGB=30°,推出△AOC是等边三角形,根据等边三角形的性质得到∠CAF=∠ACF=30°,CF=AF=a,DF= ,根据相似三角形的性质得到AG= a,GC=3a.于是得到结论.
【考点精析】利用垂径定理和切线的性质定理对题目进行判断即可得到答案,需要熟知垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC,及矩形表演台BCDE四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以AB,AC为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE 中,CD=10米,三角形水域ABC的面积为 平方米,设∠BAC=θ.
(1)求BC的长(用含θ的式子表示);
(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式.
(2)请直接写出D点的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A=105°,∠B=30°,AC=2.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.
(1)求证:△EDH∽△FBH;
(2)若BD=6,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= (m为常数,且m≠5).
(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.

查看答案和解析>>

同步练习册答案