精英家教网 > 初中数学 > 题目详情
14.计算:
(1)(-3)0+(-2)3-($\frac{1}{2}$)-2
(2)12a2b•(-3ab)÷(-2ab)2
(3)982
(4)(2a+5)(2a-5)-4a(a-2)

分析 (1)原式利用零指数幂、负整数指数幂法则计算即可得到结果;
(2)原式先计算乘方运算,再计算乘除运算即可得到结果;
(3)原式变形后,利用完全平方公式计算即可得到结果;
(4)原式利用平方差公式,以及单项式乘以多项式法则计算即可得到结果.

解答 解:(1)原式=1-8-4=-11;
(2)原式=-36a3b2÷4a2b2=-9a;
(3)原式=(100-2)2=10000-400+4=9604;
(4)原式=4a2-25-4a2+8a=8a-25.

点评 此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.把(-2)×(-2)×(-2)×(-2)×(-2)的运算结果用含以2为底的幂的形式表示为-25

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在网格中有点A(3,-1).
(1)将点A向左平移4个单位,得到点A1,请在图上标出这个点,并写出它的坐标.
(2)将点A向上平移4个单位,得到点A2,请在图上标出这个点,并写出它的坐标.
(3)你能判断直线AA1与x轴,直线AA2与y轴的位置关系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”.写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.把下列各数填在相应的表示集合的大括号内:$\frac{2}{3}$,-0.$\stackrel{•}{3}$$\stackrel{•}{1}$,-(-2),$-\root{3}{27}$,1.732,$\sqrt{3}$,0,$\frac{π}{3}$,1.1010010001…(每两个1之间依次多一个0)
整  数{-(-2),-$\root{3}{27}$,0 …}
正分数{$\frac{2}{3}$,1.732…}
无理数{$\sqrt{3}$,$\frac{π}{3}$,1.1010010001…(每两个1之间依次多一个0)…}
实 数 {$\frac{2}{3}$,-0.$\stackrel{.}{3}$$\stackrel{.}{1}$,-(-2),-$\root{3}{27}$,1.732,$\sqrt{3}$,0,$\frac{π}{3}$,1.1010010001…(每两个1之间依次多一个0) …}.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,∠CAB=67°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(  )
A.46°B.50°C.65°D.67°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,-1),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x-h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度沿平行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=-x2+4x+5与x轴的交点A,B(A在B的左边),顶点为P.
(1)求△PAB的面积.
(2)若抛物线上有一点Q,满足S△QAB=30,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算(-2)2016+(-2)2015的结果是22015

查看答案和解析>>

同步练习册答案