【题目】如图,在中.,,,则
A. B. C. D.
【答案】B
【解析】
本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.
过A作AD交BC于D,使∠BAD=15°,
∵△ABC中,∠ACB=90°,∠ABC=15°,
∴∠BAC=75°,
∴∠DAC=∠BAC∠BAD=75°15°=60°,
∴∠ADC=90°∠DAC=90°60°=30°,
∴AC=AD,
又∵∠ABC=∠BAD=15°
∴BD=AD,
∵BC=1,
∴AD+DC=1,
CD=x,则AD=1x,AC=(1x),
∴AD2=AC2+CD2,即(1x)2=(1x)2+x2,
解得:x=3+2,
∴AC=(42)=2,
故选:B.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+(2﹣2m)x+m﹣2(m是常数).
(1)无论m取何值,该抛物线都经过定点 D.直接写出点D的坐标.
(2)当m取不同的值时,该抛物线的顶点均在某个函数的图象上,求出这个函数的表达式.
(3)若在0≤x≤1的范围内,至少存在一个x的值,使y>0,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.
(1)求出y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5 m的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4 m,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1 m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,点E是CD延长线上一点,BE交AD于点F,DE=CD.
(1)求证:△ABF∽△CEB
(2)若△DEF的面积为2,求ABCD的面积.
(3)若G、H分别为BF、AB的中点,AG、FH交于点O,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如右表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是________环,乙的平均成绩是________环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com