精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是⊙O的内接正三角形,点D是的中点,连接BD并延长BD到点E,使BD=DE,连接CD和DE.
(1)求证:△CDE是正三角形.
(2)问:△CDE经怎样的变换后能与△ABC成位似图形?请在图中直接画出△CDE变换后的对应三角形△CD'E',并求出△CD'E'与△ABC的位似比.
 
(1)见解析
(2) 见解析
解:(1)证明:∵△ABC是⊙O的内接正三角形,
∴∠BAC=60°,
∴∠CDE=60°,
∵点D是的中点,
∴BD=CD,
∵BD=DE,
∴CD=DE,
∴△CDE是正三角形;
(2)如图:当△CDE绕点C旋转∠ACD的度数时与△ABC成位似图形,
∵∠BDC=120°,BD=CD,
∴∠CBD=∠BCD=30°,
∵∠ACB=60°,
∴∠ACD=90°,
∴当△CDE绕点C旋转90°时与△ABC成位似图形,
作DF⊥BC于F点,
设DC=2x,
∵∠BCD=30°,
∴FC=
∴BC=2FC=2x,
∴位似比====
∴位似比为
 
 
(1)利用圆内接四边形的性质可以求得∠BDC的度数,然后利用有一个角是60°的等腰三角形是等边三角形可以判定等边三角形;
(2)当CD与CA重合时,两三角形位似,所以当旋转∠ACD的度数的时候,两三角形位似,位似比等于CD与CA的比.∠B
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为  
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又
  
  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是两个形状相同的新月形图案,则x的值为(  )
A.6B.10C.12D.18

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,已知矩形AECF矩形BECD,且AF=FD,那么AE与AF的比值是(  )
A.
1+
2
2
B.
1+
3
2
C.
1+
5
2
D.
1+
6
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.
(1)求AD的长;
(2)求矩形DMNC与矩形ABCD的相似比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

长为9,6,5,4的四根木条,选其中三根组成三角形,选法有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

同步练习册答案