精英家教网 > 初中数学 > 题目详情
15.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.
(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.
(2)当销售价定为45元时,计算月销售量和销售利润.
(3)当销售价定为多少元时会获得最大利润?求出最大利润.

分析 (1)利用已知表示出每件的利润以及销量进而表示出总利润即可;
(2)将x=45代入求出即可求出月销售量和销售利润;
(3)利用配方法求出二次函数最值即可得出答案.

解答 解:(1)由题意可得:
y=(x-30)[600-10(x-40)],
=-10x2+1300x-30000;
(2)当x=45时,600-10(x-40)=550(件),
y=-10×452+1300×45-30000=8250(元);
(3)y=-10x2+1300x-30000,
=-10(x-65)2+12250,
故当x=65(元),最大利润为12250元.

点评 此题主要考查了二次函数的应用以及配方法求二次函数最值,得出y与x的函数关系是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中模拟数学试卷(解析版) 题型:单选题

若(x+y)2=9,(x﹣y)2=5,则xy的值为(  )

A. ﹣1; B. 1 ; C. ﹣4; D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.

(1)如图1,求证:AD=CE;
(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;
(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=$\sqrt{3}$.求:EH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,图中实线部分是半径为9m的两条等弧组成的花坛,若每条弧所在的圆都经过另一个圆的圆心,则这个花坛的周长为(  )
A.12π mB.18π mC.20π mD.24π m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图,在矩形ABCD中,M、N分别是AB、DC的中点,P、Q分别是DM、BN的中点.
(1)求证:DM=BN;
(2)四边形MPNQ是怎样的特殊四边形,请说明理由;
(3)矩形ABCD的边长AB与AD满足什么长度关系时四边形MPNQ为正方形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,小明家屋前有一块矩形空地,在空地上的点A、B、C处种有三棵树,小明想在矩形的空地上建一个圆形花坛,使这三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(用直尺和圆规作图,保留作图痕迹);
(2)若AB=12m,AC=5m,∠BAC=90°,求小明家花坛的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
(1)-14-〔2-(-32)〕÷(-$\frac{1}{2}$)3
(2)-52-〔23+﹙1-0.8×$\frac{3}{4}$)÷(-22)〕
(3)(-$\frac{1}{30}$)÷($\frac{2}{3}$-$\frac{1}{10}$+$\frac{1}{6}$-$\frac{2}{5}$)
(4)-12010÷(-5)2×(-$\frac{5}{3}$)+|0.8-1|
(5)-$\frac{2x-1}{3}$-2(1-x+$\frac{x+1}{2}$)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知关于x的一元二次方程x2-6x+k+4=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若k为大于2的整数,且该方程的根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算下列各题.
(1)-1.3+(-1.7)-(-13)
(2)-30×($\frac{1}{2}$-$\frac{2}{3}$-$\frac{7}{15}$)
(3)(-2)2×3+2×(-32
(4)-2×($\sqrt{49}$-$\root{3}{-64}$)+|-7|.

查看答案和解析>>

同步练习册答案