精英家教网 > 初中数学 > 题目详情

数学公式=9,x=________.若(x-1)2=1,x=________.

±9    0或2
分析:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,根据此定义解方程即可求解.如果一个数x的平方等于a,那么x是a的平方根,根据此定义解方程即可求解.
解答:∵=9,
∴|x|=9,
∴x=±9.
∵(x-1)2=1,
∴x-1=±1,
∴x=0或x=2.
故答案为±9;0或2.
点评:此题主要考查了算术平方根的定义,注意非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.同时考查了平方根的定义,比较简单,解答此题的关键是熟知平方根的定义:如果一个数的平方等于a,那么这个数叫a的平方根,一个数的平方根有两个.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(精英家教网4,6),且AB=2
10

(1)求点B的坐标;
(2)求经过A、B、D三点的抛物线的解析式;
(3)点C是不是也在(2)中的抛物线上,若在请证明,若不在请说明理由;
(4)在(2)中所求的抛物线上是否存在一点P,使得S△PBC=
1
2
S梯形ABCD
?若存在,请求出该点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•保定二模)(1)如图1所示,△ABC是正三角形,E,D分别是以C为顶点的CB和AC延长线上的点,且BE=CD,连接DB并延长,交AE于F.求∠AFB的度数;
(2)若将(1)中正△ABC改成正四边形ABCM,如图2 所示,E,D分别是以C为顶点的CB和MC延长线上的点,且BE=CD,连接DB并延长,交AE于F.求∠AFB的度数;
(3)若将(2)中正△ABC改成正五边形ABCMN,如图3 所示,其它条件均不变,则∠AFB的度数为
108°
108°

(4)若将(1)中正△ABC改成正n边形ABCM…N,如图4所示,其它条件均不变,根据(1),(2),(3)中所展现的规律用含字母n的代数式表达∠AFB的度数,并说明理由.
(5)若将(2)中正四边形ABCM改成正六边形ABCMKN,其它条件均不变,则∠AFB的度数为
120°
120°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)如图,在直角坐标系内有点P(1,1)、点C(1,3)和二次函数y=-x2
(1)若二次函数y=-x2的图象经过平移后以C为顶点,请写出平移后的抛物线的解析式及一种平移的方法;
(2)若(1)中平移后的抛物线与x轴交于点A、点B(A点在B点的左侧),求cos∠PBO的值;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.

(1)如图1,若AB∥ON,则
①∠ABO的度数是
20°
20°

②当∠BAD=∠ABD时,x=
120°
120°
;当∠BAD=∠BDA时,x=
60°
60°

(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年北京市西城区中考数学二模试卷(解析版) 题型:解答题

如图,在直角坐标系内有点P(1,1)、点C(1,3)和二次函数y=-x2
(1)若二次函数y=-x2的图象经过平移后以C为顶点,请写出平移后的抛物线的解析式及一种平移的方法;
(2)若(1)中平移后的抛物线与x轴交于点A、点B(A点在B点的左侧),求cos∠PBO的值;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案