精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)①直接写出点E的坐标:  
②求证:AG=CH.
(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.
解:(1)① (1,)。
②证明:∵四边形OABC是矩形,∴CE=AE,BC∥OA。∴∠HCE=∠GAE。
∵在△CHE和△AGE中,∠HCE=∠GAE, CE=AE,∠HEC=∠G EA,
∴△CHE≌△AGE(ASA)。∴AG=CH。
(2)连接DE并延长DE交CB于M,连接AC, 则由矩形的性质,点E在AC上。

∵DD=OC=1=OA,∴D是OA的中点。
∵在△CME和△ADE中,
∠MCE=∠DAE, CE=AE,∠MEC=∠DEA,
∴△CME≌△ADE(ASA)。∴CM=AD=2-1=1。
∵BC∥OA,∠COD=90°,∴四边形CMDO是矩形。∴MD⊥OD,MD⊥CB。
∴MD切⊙O于D。
∵HG切⊙O于F,E(1,),∴可设CH=HF=x,FE=ED==ME。
在Rt△MHE中,有MH2+ME2=HE2,即(1-x)2+()2=(+x)2,解得x=
∴H(,1),OG=2-。∴G(,0)。
设直线GH的解析式是:y=kx+b,
把G、H的坐标代入得:,解得:
∴直线GH的函数关系式为
(3)连接BG,

∵在△OCH和△BAG中,
CH=AG,∠HCO=∠GAB,OC=AB,
∴△OCH≌△BAG(SAS)。∴∠CHO=∠AGB。
∵∠HCO=90°,∴HC切⊙O于C,HG切⊙O于F。
∴OH平分∠CHF。∴∠CHO=∠FHO=∠BGA。
∵△CHE≌△AGE,∴HE=GE。
∵在△HOE和△GBE中,HE=GE,∠HEO=∠GEB,OE=BE,
∴△HOE≌△GBE(SAS)。∴∠OHE=∠BGE。
∵∠CHO=∠FHO=∠BGA,∴∠BGA=∠BGE,即BG平分∠FGA。
∵⊙P与HG、GA、AB都相切,∴圆心P必在BG上。
过P做PN⊥GA,垂足为N,则△GPN∽△GBA。∴
设半径为r,则,解得
答:⊙P的半径是
一次函数综合题,矩形的性质和判定,全等三角形的性质和判定,切线的判定和性质,勾股定理,待定系数法,直线上点的坐标与方程的关系,角平分线的判定和性质,相似三角形的判定和性质。
【分析】(1))①根据矩形的性质和边长即可求出E的坐标。
②推出CE=AE,BC∥OA,推出∠HCE=∠EAG,证出△CHE≌△AGE即可。
(2)连接DE并延长DE交CB于M,求出DD=OC=OA,证△CME≌△ADE,推出四边形CMDO是矩形,求出MD切⊙O于D,设CH=HF=x,推出(1-x)2+()2=(+x)2,求出H、G的坐标,设直线GH的解析式是y=kx+b,把G、H的坐标代入求出即可。
(3)连接BG,证△OCH≌△BAG,求出∠CHO=∠AGB,证△HOE≌△GBE,求出∠OHE=∠BGE,得出BG平分∠FGA,推出圆心P必在BG上,过P做PN⊥GA,垂足为N,根据△GPN∽△GBA,得出,设半径为r,代入求出即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

将直线y=4x+1的图象向下平移3个单位长度,得到直线_____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.
(2)当t为何值时,△OMN∽△OBA?
(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为
A.3    B.4  C.1或-2D.2或-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

连降天大雨,某水库的蓄水量随时间的增加而直线上升,若该水库的蓄水量(万)与降雨的时间(天)的关系如图所示,则下列说法正确的是(     )
A.降雨后,蓄水量每天减少B.降雨开始时,蓄水量为
C.降雨后,蓄水量每天增加D.降雨第天,蓄水量增加

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示:
(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;
(2)(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,求出公司月利润W(万元)与x(元)之间的函数关系式;并说明该公司最早可在几个月后还清贷款.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数的图像经过点(2,3),则的值为   ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在梯形ABCD中,ADBC,∠BAD=90°,AD=8,动点PA出发,以每秒1个单位的速度沿ABCDD运动.设P运动的时间为t秒,△ADP的面积为SS关于t的图象如图所示,则下列结论中正确的个数( ▲ )①AB=3;②S的最大值是12;③a=7;④当t=10时,S="4.8" .
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=kx-3的图象平行于直线y=-,则k=      .

查看答案和解析>>

同步练习册答案