精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB为直径作圆O,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动。
(1)求⊙O的半径长;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数表达式,并求出当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由。
解:(1)过点D作DE⊥BC于E,
∵AB⊥BC,
∴四边形ADEB为矩形,
∴BE=AD=13,EC=3
又∵CD=5,
∴DE==4,即AB=4,
∴⊙O的半径为2cm;
(2)当P、Q运动t秒时,AP=t,CQ=2t
则S四边形PQCD=y=(13﹣t+2t)×4,
即y=2t+26(0≤t≤8)
当四边形PQCD为等腰梯形时,过P作PF⊥BC于F(如图一),
则有QF=CE=3
∴2t﹣(13﹣t)=6,
则t=
此时四边形PQCD面积y=(cm2);
(3)存在.若PQ与圆相切,设切点为G,(如图二)
作PH⊥BC于H
∵A在⊙O上,∠A=90°,
∴AD切⊙O于A,
∵PQ切⊙O于G,
∴由切线长定理得:PG=PA=t.QG=QB=16﹣2t,QH=QB﹣BH=(16﹣2t)﹣t=16﹣3t
PQ=QB+AP=16﹣t
在Rt△PQH中,PQ2=PH2+QH2
即(16﹣t)2=16+(16﹣3t)2
∴t2﹣8t+2=0,
解得
∵0≤t≤8,
∴当时,PQ与圆相切。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案