【题目】如图1,在正方形中,,为对角线上的一点,连接和.
(1)求证:;
(2)如图2,延长交于点,为上一点,连接交于点,且有.
①判断与的位置关系,并说明理由;
②如图3,取中点,连接、,当四边形为平行四边形时,求的长.
【答案】(1)证明步骤见解析;(2) ①EF⊥AM,理由见解析;②
【解析】
(1)证明△ABM≌△CBM(SAS)即可解题,
(2) ①由全等的性质和等边对等角的性质等量代换得到∠ECF=∠AEF,即可解题,
②过点E作EH⊥CD于H,先证明四边形EBCH是矩形,再由平行四边形的性质得到E,G是AB的三等分点,最后利用斜边中线等于斜边一半即可解题.
解 (1)在四边形ABCD中,AB=BC,∠ABM=∠CBM=45°,BM=BM
∴△ABM≌△CBM(SAS)
∴AM=CM
(2) ①EF⊥AM
由(1)可知∠BAM=∠BCM,
∵CE=EF,
∴∠ECF=∠EFC,
又∵∠EFC=∠AEF,
∴∠ECF=∠AEF,
∴∠AEF+∠BAM=∠BCM+∠ECF=90°,
∴∠ANE=90°,
∴EF⊥AM
②过点E作EH⊥CD于H,
∵EC=EF,
∴H是FC中点(三线合一),∠EHC=90°,
在正方形ABCD中,∠EBC=∠BCH=90°,
∴四边形EBCH是矩形,
∴EB=HC,
∵四边形AECF是平行四边形,G为AE中点,
∴AE=CF,BE=DF
∴CH=HF=DF
同理AG=EG=BE
∵AB=1
∴AE=
由①可知∠ENA=90°,
∴NG=(斜边中线等于斜边一半)
科目:初中数学 来源: 题型:
【题目】某校为灾区开展了"献出我们的爱"赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,
捐款(元) | 10 | 15 | 30 | 50 | 60 | |
人数 | 3 | 6 | 11 | 13 | 6 |
因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款38元
(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.
(2)该班捐款金额的众数,中位数分别是多少?
(3)如果用九年级(1)班捐款情况作为一个样本,请估计全校1200人中捐款在40元以上(包括40元)的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一位旅行者骑自行车沿湖边正东方向笔直的公路BC行驶,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min后到达C地,测得建筑物A在北偏西60°方向如果此旅行者的速度为10km/h,求建筑物A到公路BC的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:分别与x轴、y轴交于点B、C,且与直线l2:交于点A.
(1)求出点A的坐标
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式
(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.
(1)证明:;
(2)当时,六边形周长的值是否会发生改变,请说明理由;
(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com