精英家教网 > 初中数学 > 题目详情
4.若同一个圆的内接正三角形、正方形、正六边形的边长分别记作a3,a4,a6,则a3:a4:a6等于(  )
A.1:$\sqrt{2}$:$\sqrt{3}$B.1:2:3C.3:2:1D.$\sqrt{3}$:$\sqrt{2}$:1

分析 从中心向边作垂线,构建直角三角形,通过解直角三角形可得.

解答 解:设圆的半径是r,
则多边形的半径是r,
如图1,则内接正三角形的边长a3=2rsin60°=$\sqrt{3}$r,

如图2,内接正方形的边长是a4=2rsin45°=$\sqrt{2}$r,

如图3,正六边形的边长是a6=r,

因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比a3:a4:a6=$\sqrt{3}$:$\sqrt{2}$:1.
故选D.

点评 本题考查了正多边形和圆,正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.(1)数学爱好者小森偶然阅读到这样一道竞赛题:
一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积.
小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于$\frac{47\sqrt{3}}{4}$.

(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.
请你仿照小森的思考方式,求出这个八边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知直线l经过点A(0,-1),与双曲线y=$\frac{m}{x}$(x>0)交于点B(2,1).点P在线段AB上,过点P作x轴的垂线分别交双曲线y=$\frac{m}{x}$(x>0)和y=-$\frac{m}{x}$(x>0)于点M、N.
(1)求m的值和直线l的解析式;
(2)求S△AMN
(3)是否存在点P,使得S△AMP=$\frac{1}{4}$S△AMN?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0).C(0,-3),对称轴是直线x=l.
(1)求二次函数的解析式;
(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;
(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=$\frac{4}{7}$,AD=$\sqrt{65}$,CD=13,则线段AC的长为4$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,$\frac{OA}{OB}$=$\frac{3}{4}$.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=$\frac{k}{x}$的图象过点C.当以CD为边的正方形的面积为$\frac{2}{7}$时,k的值是(  )
A.2B.3C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的$\frac{1}{3}$后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.
(1)按原计划完成总任务的$\frac{1}{3}$时,已抢修道路1200米;
(2)求原计划每小时抢修道路多少米?

查看答案和解析>>

同步练习册答案