精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AD是半圆O的直径,AB、CD与半圆O切于点A、D,E为半圆O上一点,过点E的直线交AB于点B,交CD交点C,且CD=CE.
(1)求证:CB是半圆O的切线;
(2)如果AB=4,CD=9,求图中阴影部分的面积.
分析:(1)因为点E在圆上,所以只要连接OE并说明OE垂直于BC就可以,而CD也与半圆相切,所以只要求∠COE等于∠D就能说明问题了;
(2)过B作BF⊥CD于D,得到直角三角形,利用勾股定理求出半径,再用梯形的面积减去半圆的面积就是阴影的面积.
解答:精英家教网证明:(1)连接OE、DE,如图;
∵CD=CE,
∴∠CDE=∠CED.
∵OD=OE,
∴∠ODE=∠OED.
∴∠CDE+∠ODE=∠CED+∠OED.
∴∠CDO=∠CEO.
∵CD是半圆O的切线,AD是半圆O的直径,
∴CD⊥AD.
∴∠CEO=∠CDO=90°.
∴CB是半圆O的切线.(3分)

精英家教网(2)过点B作BF⊥CD于F,如图;
∵BA是半圆O的切线,AD是半圆O的直径,
∴BA⊥AD.
∵CD⊥AD,
∴四边形ABFD是矩形.
∴BF=AD,FD=BA=4.
∴CF=CD-CF=9-4=5.
∵CB、BA和CD都是半圆O的切线,
∴CE=CD=9,BE=BA=4.
∴CB=CE+EB=13.
在Rt△CFB中,由勾股定理,得BF=
CB2-CF2
=
132-52
=12,
∴AD=12.(5分)
∵S半圆=
1
2
π62=18π,S梯形ABCD=
1
2
(4+9)•12=78.
∴S阴影=S梯形ABCD-S半圆=78-18π.
点评:解答此题关键在于作辅助线,作出辅助线构造出直角三角形,问题也就不难解决了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,平行四边形ABCD在平面直角坐标系中,AD=6.OA、OB的长是精英家教网关于x的方程x2-7x+12=0的两个根,且OA>OB.
(1)求cos∠ABC的值;
(2)若E是x轴正半轴上的一点,且S△AOE=
163
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似,同时说明理由;
(3)点M在平面直角坐标系中,点F在直线AB上,如果以A、C、F、M为顶点的四边形为菱形,请直接写出F点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除O外的一点,AC与DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)写出“以①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明;
(2)“以①②③中的任意两个为条件,推出笫三个(结论)”可以组成多少个正确的命题?(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闸北区一模)已知:如图,直线y=x-15与x轴、y轴分别相交于点A和点B.抛物线y=-
13
x2+bx+c
经过A、B两点.
(1)求这个抛物线的解析式;
(2)若这抛物线的顶点为点D,与x轴的另一个交点为点C.对称轴与x轴交于点H,求△DAC的面积;
(3)若点E是线段AD的中点.CE与DH交于点G,点P在y轴的正半轴上,△POH是否能够与△CGH相似?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线y=x-15与x轴、y轴分别相交于点A和点B.抛物线数学公式经过A、B两点.
(1)求这个抛物线的解析式;
(2)若这抛物线的顶点为点D,与x轴的另一个交点为点C.对称轴与x轴交于点H,求△DAC的面积;
(3)若点E是线段AD的中点.CE与DH交于点G,点P在y轴的正半轴上,△POH是否能够与△CGH相似?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

  已知:如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D

1.(1)求BC两点的坐标;

2.(2)求直线CD的函数解析式;

3.(3)设EF分别是线段ABAD上的两个动点,且EF平分四边形ABCD的周长.

试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?

 

 

查看答案和解析>>

同步练习册答案