精英家教网 > 初中数学 > 题目详情

已知:如图,直线y=x-15与x轴、y轴分别相交于点A和点B.抛物线数学公式经过A、B两点.
(1)求这个抛物线的解析式;
(2)若这抛物线的顶点为点D,与x轴的另一个交点为点C.对称轴与x轴交于点H,求△DAC的面积;
(3)若点E是线段AD的中点.CE与DH交于点G,点P在y轴的正半轴上,△POH是否能够与△CGH相似?如果能,请求出点P的坐标;如果不能,请说明理由.

解:(1)∵y=x-15,
y=0时,0=x-15,
∴x=15,
当x=0时,y=-15,
∴A(15,0),B(0,-15),
代入得
解得
∴抛物线的解析式:y=-x2+6x-15.

(2)抛物线的解析式可变形为
∴顶点D坐标为(9,12),
设y=0,则
∴(x-9)2=36.
∴x1=3,x2=15,
∴点C的坐标为(3,0),


(3)∵点E是线段AD的中点,点H是线段AC的中点,.
∴点G是△DAC的重心.如图:

∵顶点D坐标为(9,12),

∴HO=9,CH=6.
设△POH∽△GHC时,
=
=
∴PO=6,
∴P1(0,6);
△POH∽△CHG时,=
=


∴△POH能够与△CHG相似,相似时点P的坐标为P1(0,6)或
分析:(1)分别把x=0和y-0代入一次函数的解析式,求出A、B的坐标,代入抛物线得出方程组,求出方程组的解,即可得出抛物线的解析式;
(2)求出顶点D的坐标和C的坐标,根据三角形的面积公式求出即可;
(3)求出GH、HO、CH的值,根据相似三角形的性质得出两个比例式,代入即可求出P的坐标.
点评:本题考查了三角形的面积,用待定系数法求二次函数的解析式,二次函数图象上点的坐标,相似三角形的性质和判定等知识点的运用,主要培养了学生综合运用性质进行推理和计算的能力,题目比较典型,但有一定的难度,注意:分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,直线y=
3
3
x+
3
与x轴、y轴分别交于A、B两点,⊙M经过精英家教网原点O及A、B两点.
(1)求以OA、OB两线段长为根的一元二方程;
(2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO,写出经过O、C、A三点的二次函数的解析式;
(3)若延长BC到E,使DE=2,连接EA,试判断直线EA与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b经过点A、B.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4). 
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步练习册答案