【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)在运动过程中,当直线MN与⊙O相切时,求t的值.
【答案】(1) t=1;(2) t=s时,△CMQ是以CQ为底的等腰三角形;(4) ,当直线MN与⊙O相切时,t的值是s或s.
【解析】
试题分析:(1)根据速度和时间表示PB=4t,利用同角的三角函数列式为:tan∠DBC= ,得PQ=3t;则BQ=5t,根据角平分线的性质得:CQ=PQ,列方程可得结果;(2)如图2中,作MT⊥BC于T,由等腰三角形三线合一得:TQ=(8﹣5t),证明△QTM∽△BCD,列比例式得,代入可得方程,解方程即可;(3)由题意∠OEF=∠DEN=∠ADB,则sin∠OEF=sin∠DEN=sin∠ADB=3:5,分两种情况:①若点O在正方形外MN与⊙O相切,如图3所示,根据同角的三角函数列式可得结果;②若点O在正方形内MN与⊙O相切,如图4所示,同理列式:,解出即可.
试题解析:(1)由题意得:PB=4t,
∵四边形ABCD是矩形,
∴∠C=90°
∵PQ⊥BC
∴∠BPQ=90°
∵BC=AD=8,CD=6
∴tan∠DBC=
∴
∴PQ=3t
由勾股定理得:BQ=5t
∴CQ=BC﹣BQ=8﹣5t,
∵DQ平分∠BDC,DC⊥BC,
∴CQ=PQ,
则8﹣5t=3t,
t=1;
故答案为:1;
(2)如图2中,作MT⊥BC于T,
∵MC=MQ,MT⊥CQ,
∴TC=TQ,
由(1)可知TQ=(8﹣5t),QM=PQ=3t,
∵四边形PQMN为正方形,
∴MQ∥PN,
∴∠MQT=∠DBC,
∴△QTM∽△BCD,
∴,
∴,
∴t=(s);
∴t=s时,△CMQ是以CQ为底的等腰三角形;
(3)设MN与⊙O相切于点F,与CD交于点E,则OF=0.8,
由题意∠OEF=∠DEN=∠ADB,
∴sin∠OEF=sin∠DEN=sin∠ADB=3:5,
∴ ,
∴,
∴OE= ,
①若点O在正方形外MN与⊙O相切,如图3所示,
∵OD=3t,
∴DE=3t+,
∵BP=4t,NP=PQ=3t,
∴DN=10﹣7t,
∴,
∴t=;
②若点O在正方形内MN与⊙O相切,如图4所示,
∵OD=3t∴DE=3t﹣,
∵BP=4t,NP=PQ=3t,
∴DN=10﹣7t,
∴,
∴t=,
综上所述,当直线MN与⊙O相切时,t的值是s或s.
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,将坐标是(3,0),(3,2),(0,3),(3,5),(3,2),(6,3),(6,2),(3,0),(6,0)的点用线段依次连接起来形成一个图案.
(1)作出原图案关于x轴对称的图案.两图案中的对应点的坐标有怎样的关系?
(2)作出原图案关于y轴对称的图案.两图案中的对应点的坐标有怎样的关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列两个多项式相乘,不能运用公式(a+b)(a-b)=a2-b2计算的是( )
A. (-m-n)(m+n) B. (-m+n)(m+n)
C. (-m+n)(-m-n) D. (m-n)(n+m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有理数a,b,c在数轴上的位置如图所示:
解答下列式子:
(1)比较a,|b|,c的大小(用“<”连接);
(2)若m=|a+b|﹣|b﹣1|﹣|a﹣c|,试化简等式的右边;
(3)在(2)的条件下,求 ﹣2017(m+c)2017的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com