精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?

4或秒.

解析试题分析:设经过x秒△PQC和△ABC相似,先求出CP=8-x,CQ=2x,再利用相似三角形对应边成比例列式求解即可.
试题解析:设经过x秒,两三角形相似,则CP=AC-AP=8-x,CQ=2x,
(1)当CP与CA是对应边时,

解得x=4秒;
(2)当CP与BC是对应边时,

解得x=秒;
故经过4或秒,两个三角形相似.
考点: 相似三角形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC, BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F, DF="6."
(1) 求AE的长;
(2) 求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求的值.

他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.
请你回答:(1)AB和EH的数量关系为    ,CG和EH的数量关系为    ,的值为    .
(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为    (用含a的代数式表示).

(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为    (用含m,n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.

【类比探究】
(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?

(2)如果两楼之间相距MN=m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

查看答案和解析>>

同步练习册答案