已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC, BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F, DF="6."
(1) 求AE的长;
(2) 求 的值.
(1);(2).
解析试题分析:(1)根据等边三角形的性质和判定推出∠C=60°,求出∠CBF=60°,∠F=30°,解直角三角形求出BD,即可得出答案.
(2)求出BF长,根据相似三角形的性质和判定得出即可.
试题解析:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,
∴AC=AB=BC.∴△ABC是等边三角形.∴∠C=60°.
∵BF∥AC,∴∠CBF=∠C=60°.
∵AD⊥BC,∴∠FDB=90°.∴∠F=30°.
∵DF=6,∴BD=.
∵AE=EC=BD=DC,∴AE=.
(2)∵∠BDF=90°,∠F=30°,BD=,∴BF=2DB=.
∵AC∥BF,∴△AEG∽△FBG.
∴.
考点:1.等边三角形的判定与性质;2.相似三角形的判定与性质.
科目:初中数学 来源: 题型:填空题
在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有 条.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知在△ABC中,AB=AC,BC比AB大3,,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.
(1)求AG的长;
(2)当∠APQ=90º时,直线PG与边BC相交于点M.求的值;
(3)当点Q在边AC上时,设BP=,AQ=,求关于的函数解析式,并写出它的定义域.[
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图1,梯形中,∥,,.一个动点从点出发,以每秒个单位长度的速度沿线段方向运动,过点作,交折线段于点,以为边向右作正方形,点在射线上,当点到达点时,运动结束.设点的运动时间为秒().
(1)当正方形的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设正方形与△的重合部分面积为,请直接写出与之间的函数关系式和相应的自变量的取值范围;
(3)如图2,当点在线段上运动时,线段与对角线交于点,将△沿翻折,得到△,连接.是否存在这样的,使△是等腰三角形?若存在,求出对应的的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.有下列结论:
①∠DEO=45°;
②△AOD≌△COE;
③S四边形CDOE =S△ABC;
④.
其中正确的结论序号为 .(把你认为正确的都写上)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
数学课上,张老师出示图1和下面的条件:如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得的值为 ;
②在平移过程中,的值为 (用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算 的值(用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB,类似地,在AB上折出点B″使AB″=AB′,这时B″就是AB的黄金分割点,请你证明这个结论.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.
(1)你能否再各举出一个 “能相似分割”的三角形和四边形?
(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com