如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.
(1)你能否再各举出一个 “能相似分割”的三角形和四边形?
(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.
(1)直角三角形,一组底角是60°,腰与一底相等的等腰梯形;(2)作图,理由见解析.
解析试题分析:(1)根据相似的性质,即相似比相等,对应角相等,可找出直角三角形,从直角顶点向斜边作高,则把三角形分成了二个与原三角形相似的三角形.四边形为一组底角是60°、腰与一底相等的等腰梯形;
(2)能,因为顺次连接三角形三边中点,将三角形分成的四个三角形都和原三角形相似.
试题解析:(1)“能相似分割”的三角形为直角三角形,
“能相似分割”的四边形为一组底角是60°,腰与一底相等的等腰梯形.
(2)如图,任意三角形都是“能相似分割的图形”,
分割方案:顺次连接三角形三边中点,将三角形分成的四个三角形都和原三角形相似.
考点: 作图—相似变换.
科目:初中数学 来源: 题型:解答题
已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC, BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F, DF="6."
(1) 求AE的长;
(2) 求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=.
(1)求AE的长; (2)求ΔCEF的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求的值.
他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.
请你回答:(1)AB和EH的数量关系为 ,CG和EH的数量关系为 ,的值为 .
(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为 (用含a的代数式表示).
(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为 (用含m,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?
(2)如果两楼之间相距MN=m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com