精英家教网 > 初中数学 > 题目详情

已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=,猜想EF与DE的位置关系,并说明理由.

证明见解析.

解析试题分析:由四边形ABCD是正方形,可得∠B=∠C=90°,AB=BC=CD,又由E是BC的中点,F在AB上,且BF=AB,即可证得,然后由两组对应边的比相等且夹角对应相等的两个三角形相似,即可证得△BEF∽△CDE,继而可求得∠DEF=90°,即可证得EF⊥DE.
试题解析:EF⊥DE.理由:
∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵E是BC的中点,BF=AB,
∴BE=EC=BC,
∴BF=EC,BE=CD,

∴△BEF∽△CDE,
∴∠BEF=∠CDE,
∵∠CDE+∠CED=90°,
∴∠BEF+∠CED=90°,
∴∠DEF=90°,即EF⊥DE.
考点:1.正方形的性质2.相似三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为    米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,梯形中,.一个动点从点出发,以每秒个单位长度的速度沿线段方向运动,过点,交折线段于点,以为边向右作正方形,点在射线上,当点到达点时,运动结束.设点的运动时间为秒().
(1)当正方形的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设正方形与△的重合部分面积为,请直接写出之间的函数关系式和相应的自变量的取值范围;
(3)如图2,当点在线段上运动时,线段与对角线交于点,将△沿翻折,得到△,连接.是否存在这样的,使△是等腰三角形?若存在,求出对应的的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

数学课上,张老师出示图1和下面的条件:如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得的值为       
②在平移过程中,的值为           (用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算 的值(用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB,类似地,在AB上折出点B″使AB″=AB′,这时B″就是AB的黄金分割点,请你证明这个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).

(1)当t=           s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.

(1)你能否再各举出一个 “能相似分割”的三角形和四边形?
(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在正方形中,分别是边上的点,并延长交的延长线于点

(1)求证:
(2)若正方形的边长为4,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

老师要求同学们在图①中内找一点P,使点P到OM、ON的距离相等.
小明是这样做的:在OM、ON上分别截取OA=OB,连结AB,取AB中点P,点P即为所求.
请你在图②中的内找一点P,使点P到OM的距离是到ON距离的2倍.要求:简单叙述做法,并对你的做法给予证明.

查看答案和解析>>

同步练习册答案