【题目】如图,在中,,,的平分线与的垂直平分线交于点,点沿折叠后与点重合,则的度数是__________度.
【答案】
【解析】
连接OB,OC,先求出∠BAO=25°,进而求出∠BOD=65°,∠OBC=40°,求出∠COE=∠OCB=40°,由三角形外角的性质求出∠BOE=60°,问题即可解决.
解:如图,连接OB,
∵∠BAC=50°,AO为∠BAC的平分线,
∴∠BAO=∠BAC=×50°=25°.
又∵AB=AC,
∴∠ABC=∠ACB=65°.
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=25°,
∴∠BOD=90°-25°=65°.
∵∠ABC=65°, ∠ABO =25°,
∴∠OBC=∠ABC-∠ABO=65°-25°=40°.
∵AO为∠BAC的平分线,AB=AC,
∴直线AO垂直平分BC,
∴OB=OC,
∴∠OCB=∠OBC=40°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE.
∴∠COE=∠OCB=40°;
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,
∴∠BOE=∠OEC-∠OBC=100°-40°=60°,
∴∠DOE=60°+65°=125°
故答案为:125.
科目:初中数学 来源: 题型:
【题目】如图,已知点,且,满足.过点分别作轴、轴,垂足分别是点、.
(1)求出点的坐标;
(2)点是边上的一个动点(不与点重合),的角平分线交射线于点,在点运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由.
(3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90%.
(1)这堆球的数目最多有多少个?
(2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C的切线垂直,垂足为 D,直线 DC 与AB 的延长线相交于点P,弦CE平分∠ACB,交AB 于点F,连接BE.
求证:(1)AC 平分∠DAB;
(2)△PCF 是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是的的直径,BCAB于点B,连接OC交于点E,弦AD//OC,弦DFAB于点G.
(1)求证:点E是的中点;
(2)求证:CD是的切线;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=8cm,AB=10cm,点P由点C出发以每秒2cm的速度沿CA向点A运动(不运动至A点),⊙O的圆心在BP上,且⊙O分别与AB、AC相切,当点P运动2秒钟时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列函数中,具有过原点,且当x>0时,y随x增大而减小,这两个特征的有()
①y=-ax2(a>0) ②y=(a-1)x2(a<1) ③y=-2x+a2(a≠0) ④y=x-a
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法计算结果很简单,由此又发现一个新的乘法公式: _________________________(请用含a、b的字母表示)
(3)下列各式能用你发现的乘法公式计算的是( )
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式计算: =
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com