精英家教网 > 初中数学 > 题目详情

【题目】为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精确到个位)

【答案】解:过点C作CD⊥AB于D, ∵BC=200m,∠CBA=30°,
∴在Rt△BCD中,CD= BC=100m,BD=BCcos30°=200× =100 ≈173(m),
∵∠CAB=54°,
在Rt△ACD中,AD= ≈72(m),
∴AB=AD+BD=173+72≈245(m).
答:隧道AB的长为245m.

【解析】首先过点C作CD⊥AB于D,然后在Rt△BCD中,利用三角函数的知识,求得BD,CD的长,继而在Rt△ACD中,利用∠CAB的正切求得AD的长,继而求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,ABCD中,若AB=1,BC=2,则ABCD1阶准菱形.

(1)判断与推理:

①邻边长分别为23的平行四边形是 阶准菱形

②小明为了剪去一个菱形,进行如下操作:如图2,把ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABEF是菱形.

(2)操作、探究与计算:

①已知ABCD是邻边长分别为1,a(a>1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r(r>0),则ABCD

阶准菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣ ),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以RtABC的斜边BC为一边作正方形BCDE设正方形的中心为O,连结AO,如果AB=3,AO,那么AC的长等于__________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1

(2)点A1,B1,C1的坐标分别为         

(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.

查看答案和解析>>

同步练习册答案