【题目】如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度数;
(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;
(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.
【答案】(1)∠AOD=150°;(2)t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由见解析.
【解析】
(1)由角的和差倍分构建方程求出∠AOD的度数为150°;
(2)分两射线重合前后两种情况,建立等量关系求出时间分别为t=2或t=;
(3)由角度的旋转求出旋转角的大小,角的和差,角平分线的定义求出∠MON的度数为30°.
解:如图所示:
(1)设∠AOD=5x°,
∵∠BOC=∠AOD
∴∠BOC=5x°=3x°
又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,
∠AOD=∠AOB+∠BOC+∠DOC,
∴∠AOC+∠BOD=∠AOD+∠BOC,
又∵∠AOC=∠BOD=120°,
∴5x+3x=240
解得:x=30°
∴∠AOD=150°;
(2)∵∠AOD=150°,∠BOC=∠AOD,
∴∠BOC=90°,
①若线段OB、OC重合前相差20°,则有:
20t+15t+20=90,
解得:t=2,
②若线段OB、OC重合后相差20°,则有:
20t+15t﹣90=20
解得:t=,
又∵0<t<6,
∴t=2或t=;
(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:
∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°
∵OM、ON分别平分∠AOC、∠BOD
∴∠AOM=∠AOC=,
∠DON=∠BOD=
∴∠MON=∠AOD﹣∠AOM﹣∠DON
=150°﹣5t°﹣﹣
=30°.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,并证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.
(1)求直线AD的解析式;
(2)若E为y轴上的点,求△EBC周长的最小值;
(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.
②先化简再求值:化简:,x=2020.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求BD的长;
(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.
(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:
(2)当AB= 时,四边形ACBF为正方形(请直接写出)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,O为直线AB上一点,∠AOC=30°,点C在AB的上方.MON为直角三角板,O为直角顶点,,ON在射线OC上.将三角板MON绕点O以每秒6°的速度沿逆时针方向旋转,与此同时,射线OC绕点O以每秒11°的速度沿逆时针方向旋转,当射线OC与射线OA重合时,所有运动都停止.设运动的时间为t秒,
(1)旋转开始前,∠MOC= °,∠BOM= °;
(2)运动t秒时,OM转动了 °,t为 秒时,OC与OM重合;
(3)t为何值时,∠MOC=35°?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com