精英家教网 > 初中数学 > 题目详情
(2011湖南衡阳,26,10分)如图,在矩形ABCD中,AD=4,AB=m(m>4),点PAB边上的任意一点(不与AB重合),连结PD,过点PPQPD,交直线BC于点Q
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQAC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以PQCD为顶点的四边形的面积Sm之间的函数关系式,并写出m的取值范围.
【解】(1) 假设当m=10时,存在点P使得点Q与点C重合(如下图),

PQPD∴∠DPC=90°,∴∠APD+∠BPC=90°,
又∠ADP+∠APD=90°,∴∠BPC=∠ADP
又∠B=∠A=90°,∴△PBC∽△DAP,∴
,∴或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.
(2)如下图,∵PQAC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴,即,∴

PQAC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,即,∴
(3)由已知PQPD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),

∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP
PB=DA=4,AP=BQ=
∴以PQCD为顶点的四边形的面积Sm之间的函数关系式为:S四边形PQCD= S矩形ABCDSDAPSQBP=
==16(4<≤8).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(11·孝感)已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形纸片折一次,沿折痕剪开,能剪得的图形是
A.锐角三角形B.钝角三角形C.梯形D.菱形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD申,对角线AC、BD相交于点0,∠AOB=600,AB=5,则AD的长是(  ).

(A)5    (B)5  (C)5    (D)10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题10分) (湖南湘西24,10分)如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.
(1)求AC的长.
(2)求∠AOB的度数.
(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于矩形的说法,正确的是(   ).
A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形
C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·珠海)(本题满分6分)如图,在正方形ABC1D1中,AB=1.连接AC1
AC1为边作第二个正方形AC1C2D2;连接AC2,以AC2为边作第三个正方形AC2C3D3
(1)求第二个正方形AC1C2D2和第三个正方形的边长AC2C3D3
(2)请直接写出按此规律所作的第7个正方形的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图9,点P是正方形ABCD边AB上一点(不与点A.B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE, PE交边BC于点F.连接BE、DF。

(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当的值等于多少时.△PFD∽△BFP?并说明理由.

查看答案和解析>>

同步练习册答案