精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是半圆的直径,O为圆心,点C是弧BE的中点,过点CPCAE于点D,交AB的延长线于点P

1)求证:直线PCO的切线;

2)若∠P30°,AD3,求阴影部分的面积.

【答案】1)详见解析;(2

【解析】

1)连接OC,如图,由弧BC=CE得到∠BAC=EAC,加上∠OCA=OAC.则∠OCA=EAC,所以OCAE,从而得到PCOC,然后根据切线的判定定理得到结论;

2)解直角三角形求得AP,根据平行线分线段成比例定理求得OCOP,利用勾股定理求得CP,然后根据S=SOCPS扇形BOC求解即可.

1)连接OC

∵点C为弧BE的中点,

∴弧BC=CE

∴∠BAC=EAC

OA=OC

∴∠OCA=OAC

∴∠OCA=EAC

OCAE

PCAE

OCPC

PC是⊙O的切线.

2)在RtADP中,∠P=30°,AD=3

AP=2AD=6

OCAD

OC=x,则OP=6x

解得:x=2

OC=2OP=4

∴在RtOCP中,CP2

S=SOCPS扇形BOCOCPC2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.

(1)试判断CD与圆O的位置关系,并说明理由;

(2)若直线lAB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点运动的时间是.过点于点,连接

1______.(用含的代数式表示)

2)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由.

3)当为何值时,为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图网格图中,每个小正方形的边长均为1个单位,在RtABC中,∠C90°AC3BC4

1)试在图中作出△ABCA为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1

2)若点B的坐标为(﹣35),试在图中画出直角坐标系,并直接写出AC两点的坐标;

3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列判断正确的是( ).

A.数据3541-2的中位数为4

B.从初三月考成绩中抽取100名学生的数学成绩,这100名学生是总体的一个样本

C.甲、乙两人各射靶5次,已知方差,那么乙的射击成绩较稳定

D.了解云南省昆明市居民疫情期间的出行方式,采用全面调查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进AB两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.

(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求AB两种型号的手机每部进价各是多少元?

(2)为了满足市场需求,商场决定用不超过7.5万元采购AB两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.

①该商场有哪几种进货方式?

②该商场选择哪种进货方式,获得的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】书香校园活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:

类别

家庭藏书m

学生人数

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

根据以上信息,解答下列问题:

(1)该调查的样本容量为_____a_____

(2)在扇形统计图中,“A”对应扇形的圆心角为_____°

(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,在RtABC中,∠ACB=90°AC=BC.点PAB边上一点,QBC边上一点,且∠BPQ=APC,过点AADPC,交BC于点D,直线AD分别交直线PCPQEF

1)求证:∠FDQ=FQD

2)把DFQ沿DQ边翻折,点F刚好落在AB边上点G,设PC分别交GQGDMN,试判定MNEN的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.

(1)求证:AC平分∠DAB;

(2)若CD=4,AD=8,试求⊙O的半径.

查看答案和解析>>

同步练习册答案