精英家教网 > 初中数学 > 题目详情

如图:⊙O1与⊙O2外切于点P,O1O2的延长线交⊙O2于点A,AB切⊙O1于点B,交⊙O2于点C,BE是⊙O1的直径,过点B作BFO1P,垂足为F,延长BF交PE于点G.
(1)求证:PB2=PG•PE;
(2)若PF=数学公式,tan∠A=数学公式,求:O1O2的长.

(1)证明:∵O1P=O1E,
∴∠E=∠O1PE,
∵∠O1PE+∠PGB=90°,∠PBG+∠PGB=90°,
∴∠PBG=∠O1PG=∠E,
∵∠BPE=∠GPB,
∴△BPE∽△GPB,
=即:PB2=PG•PE;

(2)解:∵∠A+∠AO1B=∠O1BF+∠AO1B=90°,
∴∠O1BF=∠A,
∴tan∠O1BF==
∴O1F=BF,
设O1B=x,O1F=x-,BF=O1F=x-2,
在直角三角形O1FB中,根据勾股定理有:
O1F2+BF2=O1B2
(x-2+(x-2)2=x2
解得x1=,x2=
x=,不合题意舍去.
因此O1B=O1P=
在直角三角形AO1B中,sin∠BAO1=
因此AO1=
AP=AO1-O1P=,因此圆O2的半径为
因此O1O2=O1P+O2P==5.
分析:(1)可通过证三角形BPG和EPB相似来求证,这两个三角形中已知了一个公共角,根据等边对等角和等角的余角相等可得出另一组对应角相等,得出两三角形全等后即可得出本题所求的结论;
(2)本题的关键是让PF和tan∠A联系起来,∠A=∠EBG,那么可用圆O1的半径和PF的长表示出OF和BF根据勾股定理来求出O1B的长,也就求出了AB的长,然后根据∠A的正弦值即可求出O1P+AP的长,也就求出了AP即圆O2的半径的长,由此可得出O1O2的值.
点评:本题主要考查了相似三角形的判定和性质,切线的性质以及解直角三角形的应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知:如图,⊙O1与⊙O2外切于点P,直线AB过点P交⊙O1于A,交⊙O2于B,点C、D分别为⊙O1、⊙O2上的点,且∠ACP=65°,则∠BDP=
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
34
,求⊙O2的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1与⊙O2相交于C、D两点,⊙O1的割线PAB与DC的延长线交于点P,PN与⊙O2相切于点N,若PB=10,AB=6,则PN=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:⊙O1与⊙O2相交于AB两点,过点A、B的直线分别与⊙O1交于C、E,与⊙O2交于D、F,连接CE、DF.
求证:CE∥DF.

查看答案和解析>>

同步练习册答案