精英家教网 > 初中数学 > 题目详情
请你仔细阅读下列材料:让我们来规定一种运算:
.
ab
cd
.
=ad-bc,例如
.
23
45
.
=2×5-3×4=10-12=-2,再如
.
x2
14
.
=4x-2,按照这种运算的规定,请你解答下列各个问题:
(1)填空
.
-12
-11
.
=
1
1

(2)x=
1
3
1
3
时,
.
x1-x
12
.
=0
(3)求x的值,使
.
x-12
 33
.
=
.
x-2
1-1
.
分析:(1)根据规定运算的方法,把相应字母换成数据进行计算即可得解;
(2)根据规定运算的方法,整理得到关于x的方程,然后解关于x的一元一次方程即可;
(3)根据规定运算的方法,整理得到关于x的方程,然后解关于x的一元一次方程.
解答:解:(1)根据题意得,
.
-12
-11
.
=(-1)×1-(-1)×2=-1+2=1;

(2)2x-(1-x)=0,
去括号得,2x-1+x=0,
移项、合并得,3x=1,
系数化为1得,x=
1
3


(3)3(x-1)-2×3=-x-(-2)×1,
去括号得,3x-3-6=-x+2,
移项、合并得,4x=11,
系数化为1得,x=
11
4
点评:本题考查了一元一次方程的解法,代数式的求值,根据新定义的运算方法列出算式或关于x的一元一次方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

仔细想一想,聪明的你一定能完成下列问题.
阅读下列材料:
1
2
(1-
1
3
)=
1
1×3
1
2
(
1
3
-
1
5
)=
1
3×5
1
2
(
1
5
-
1
7
)=
1
5×7
,…,
1
2
(
1
99
-
1
101
)=
1
99×101

1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
99
-
1
101
)
=
1
2
(1-
1
101
)
=
50
101

回答下列问题:
(1)在和项
1
1×3
+
1
3×5
+
1
5×7
+…
中第7项是
 
,第n项是
 

(2)你能运用类似方法求出
1
2×4
+
1
4×6
+
1
6×8
…+
1
2006×2008
的值吗?请你试一试;
(3)若αn、βn(其中n为不小于3的正整数)满足αnn=-(2n+1),αn•βn=n2,请你运用上述知识求
1
(α3+1)(β3+1)
+
1
(α4+1)(β4+1)
+…+
1
(α100+1)(β100+1)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•房山区一模)阅读下面材料:
如图1,已知线段AB、CD相交于点O,且AB=CD,请你利用所学知识把线段AB、CD转移到同一三角形中.
小强同学利用平移知识解决了此问题,具体做法:
如图2,延长OD至点E,使DE=CO,延长OA至点F,使AF=OB,连接EF,则△OEF为所求的三角形.
请你仔细体会小强的做法,探究并解答下列问题:
如图3,长为2的三条线段AA′,BB′,CC′交于一点O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)请你把三条线段AA′,BB′,CC′转移到同一三角形中.(简要叙述画法)
(2)连接AB′、BC′、CA′,如图4,设△AB′O、△BC′O、△CA′O的面积分别为S1、S2、S3,则S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

请你仔细阅读下列材料:

计算:

        

根据你对所提供的材料的理解,选择合适的方法计算:

查看答案和解析>>

同步练习册答案