精英家教网 > 初中数学 > 题目详情
(2012•卢湾区一模)在矩形ABCD中,AB=4,BC=3,E是AB边上一点,EF⊥CE交AD于点F,过点E作∠AEH=∠BEC,交射线FD于点H,交射线CD于点N.
(1)如图a,当点H与点F重合时,求BE的长;
(2)如图b,当点H在线段FD上时,设BE=x,DN=y,求y与x之间的函数关系式,并写出它的定义域;
(3)连接AC,当△FHE与△AEC相似时,求线段DN的长.
分析:(1)由已知条件证明BE=BC即可求出BE的长;
(2)过点E作EG⊥CN,垂足为点G,利用矩形的性质和等腰三角形的性质证明CN=2CG=2BE,即可得到y与x之间的函数关系式;
(3)首先证明∠HFE=∠AEC,当△FHE与△AEC相似时,再分∠FHE=∠EAC和∠FHE=∠ECA两种情况求出满足题意的DN的值即可.
解答:解:(1)∵EF⊥EC,
∴∠AEF+∠BEC=90°,
∵∠AEF=∠BEC,
∴∠AEF=∠BEC=45°,
∵∠B=90°,
∴BE=BC,
∵BC=3,
∴BE=3;

(2)过点E作EG⊥CN,垂足为点G,
∴四边形BEGC是矩形,
∴BE=CG,
∵AB∥CN,
∴∠AEH=∠ENC,∠BEC=∠ECN,
∵∠AEH=∠BEC,
∴∠ENC=∠ECN,
∴EN=EC,
∴CN=2CG=2BE,
∵BE=x,DN=y,CD=AB=4,
∴y=2x-4(2≤x≤3);

(3)∵∠BAD=90°,
∴∠AFE+∠AEF=90°,
∵EF⊥EC,
∴∠AEF+∠CEB=90°,
∴∠AFE=∠CEB,
∴∠HFE=∠AEC,
当△FHE与△AEC相似时,
(ⅰ)若∠FHE=∠EAC,
∵∠BAD=∠B,∠AEH=∠BEC,
∴∠FHE=∠ECB,
∴∠EAC=∠ECB,
∴tan∠EAC=tan∠ECB,
BC
AB
=
BE
BC

∵AB=4,BC=3,
∴BE=
9
4

∵设BE=x,DN=y,y=2x-4,
∴DN=
1
2

(ⅱ)若∠FHE=∠ECA,如所示,设EG与AC交于点O,
∵EN=EC,EG⊥CN,
∴∠1=∠2,
∵AH∥EG,
∴∠FHE=∠1,
∴∠FHE=∠2,
∴∠2=∠ECA,
∴EO=CO,
设EO=CO=3k,则AE=4k,AO=5k,
∴AO+CO=8k=5,
∴k=
5
8

∴AE=
5
2
,BE=
3
2

∴DN=1,
综上所述,线段DN的长为
1
2
或1时△FHE与△AEC相似.
点评:本题考查了矩形的性质、等腰三角形的判定和等腰三角形的性质以及一次函数在几何图形中的应用、相似三角形的性质和锐角三角函数的应用,题目难度大,综合性很强,是培养学生的综合能力不错的一道题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•卢湾区一模)若cosA=
3
2
,则∠A的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)若△ABC∽△DEF,顶点A、B、C分别与D、E、F对应,且AB:DE=1:4,则这两个三角形的面积比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)对于函数y=
1
3
(x-1)2+2
,下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)已知矩形的对角线AC、BD相交于点O,若
BC
=
a
DC
=
b
,则(  )

查看答案和解析>>

同步练习册答案