【题目】如图,点在梯形的下底上,且与梯形的上底及两腰都相切,若,则梯形的周长等于 。
【答案】
【解析】
由题意得DF=DE= HO =1,设半径为r,在Rt△AOE和Rt△DAH中,分别用勾股定理得到关于r和AE的式子,联立可消去r,解出AE的长,又由BG=AE,可求得梯形周长.
解:
如图所示:点E、F、G分别为切点,链接OE、OF、OG,过D作DH⊥AB于H,
根据题意可知梯形为等腰梯形,,则DF=DE= HO =1,OA=2.5
OF⊥CD,OE⊥AD,设圆的半径为r,
在Rt△AOE中,由勾股定理得:,
在Rt△DAH中,由勾股定理得:,
整理可得:,解得AE=1.5cm(负值已舍去),
∴BG=AE=1.5cm,梯形的周长=AB+BG+GC+CD+DE+EA=12cm.
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字,2,4的不透明卡片,它们除数字外都相同;现将它们背面朝上,洗匀后,从三张卡片中随机地抽出一张,记住数字;
若把抽出的卡片放回,洗匀后,再从三张卡片中随机抽出一张,记住数字试用列表或树状图的方法,求两次抽取的卡片上的数字为一正数、一负数的概率.
若不把抽出的卡片放回,再从剩余两张卡片中随机抽出一张,直接写出两次抽取卡片上的数字为一正数、一负数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是( )
投篮次数 | 10 | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次数 | 4 | 35 | 60 | 78 | 104 | 123 | 152 | 251 |
投中频率 | 0.40 | 0.70 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
A. 0.7B. 0.6C. 0.5D. 0.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.
(1)当m=1时,该抛物线的解析式为: .
(2)求证:∠BCA=∠CAO;
(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长不计重合部分,两个果冻之间没有挤压至少为
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象如图所示,给出下列结论:①b2>4ac; ②abc<0;③a<b; ④b+c>3a;⑤方程ax2+bx+c=0的两根之和的一半大于﹣1.其中,正确的结论有( )
A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,在顶端E点测得A的仰角∠AEF=45°,
(1)若设AB为x米,请用含x的代数式表示AF的长.
(2)求出发射塔AB的高度.(cosα≈,sinα≈,tanα≈)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com