精英家教网 > 初中数学 > 题目详情
已知二次函数中函数与自变量之间的部分对应值如下表所示,点在函数图象上,当时,则   (填“”或“”).

 
0
1
2
3
 

 

2
3
2
 
 
(小于)

试题分析:代入点(0,-1)(1,2)(2,3)有
,因为在0到1递增,所以y1的最大值是2,y2的最小值是2,所以小于
点评:本题属于对二次函数的解析式的顶点式的求法和递增、递减规律的考查
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

(1)点B的坐标为      ,点C的坐标为      (用含b的代数式表示);
(2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明的爸爸下岗后,自谋出路,做起了水果生意。一天,他先去批发市场,用100元购进甲种水果,用150元购进乙种水果。乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价高0.5元。然后,他到市场零售部,都按每千克2.8元零售,结果乙种水果很快售完。甲种水果售出80%时,出现滞销,他便按原零售价的5折售完剩余水果。请你帮小明爸爸算一算这天卖水果是赔还是赚?赔或赚是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第年的维修、保养费用累计为(万元),且,若第1年的维修、保养费用为2万元,第2年为4万元。
(1)求之间的关系式;
(2)投产后,这个企业在第几年就能收回投资?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3.

(1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是      ;其蕴含的实际意义是       
②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率;
(2)通过比较(1)中不同函数的平均变化率,你有什么发现;
(3)如图,二次函数y=ax2+bx+c的图像经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N,以AM、AN为邻边作矩形AMPN,其对角线交点为G。直线MP、NP分别与边BC相交于点E、F,设AP=x。

图1                        图2
(1)求AB、AC的长;
(2)如图2,当点P落在BC上时,求x的值;
(3)当EF=5时,求x的值;
(4)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为y。试求y关于x的函数表达式,并求出y的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数的图像与y轴的交点坐标是( ).
A.(2,0)B.(-2,0)C.(0,4)D.(0,-4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=-2x2开口方向是(  )
A.向上B.向下C.向左D.向右

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是(  )
A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

同步练习册答案