精英家教网 > 初中数学 > 题目详情

若x2+bx+c=0的两根中较小的一个根是m(m≠0),则数学公式=


  1. A.
    m
  2. B.
    -m
  3. C.
    2m
  4. D.
    -2m
D
分析:先根据x2+bx+c=0的两根中较小的一个根是m(m≠0),得出=m,再把所得结果进行整理即可求出答案.
故选:D.
解答:解;∵x2+bx+c=0的两根中较小的一个根是m(m≠0),
=m,
∴-b-=2m,
∴b+=-2m,
故选:D.
点评:此题考查了公式法解一元二次方程,关键是根据求根公式得出=m,要注意本题中较小的一个根是m.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
ax2+bx+c=0(a≠0)的根为,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上所述得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有:x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决下列问题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)设方程2x2+3x+1=0的根为x1、x2,求x12+x12的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的材料:
∵ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决下列问题:
(1)若x2+bx+c=0的两根为-2和3,求b和c的值.
(2)设方程2x2-3x+1=0的两根为x1、x2,求
1
x1
+
1
x2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则
x
2
1
+
x
2
2
=(x1+x^)2-2x1x2
=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
∵ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a
综上所述得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有 x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决下列问题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)设方程2x2+3x+1=0的根为x1、x2,求x12+x22的值.
(3)设m、n是一元二次方程x2+3x-7=0的两个根,求m2+4m+n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x2+bx+c=0的两根中较小的一个根是m(m≠0),则b+
b2-4ac
=(  )

查看答案和解析>>

同步练习册答案