精英家教网 > 初中数学 > 题目详情

【题目】矩形ABCD中,AD=8cm,AB=6cm,动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动,E点运动到B点停止,F点继续运动,运动到点D停止.如图可得到矩形CFHE,设F点运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是如图中的( )

A.
B.
C.
D.

【答案】A
【解析】解:此题在读懂题意的基础上,分两种情况讨论:
当x≤4时,y=6×8﹣(x2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);
当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).
结合四个选项的图象知选A项.
故选:A.
重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、点D分别不与点A、点B重合),点E、F在AB上,EC⊥CD,FD⊥CD.
(1)求证:EO=OF;
(2)联结OC,如果△ECO中有一个内角等于45°,求线段EF的长;
(3)当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE面积为S,周长为l,问:S与l是否分别随着x的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P1、P2是反比例函数y= (k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.
(1)求反比例函数的解析式.
(2)①求P2的坐标. ②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)在直角坐标系中,先描出点A(1,3),点B(4,1).并直接写出点A关于x轴的对称的A1的坐标A1 ).

(2)在x轴上找一点C,使AC+BC的值最小(保留作图痕迹).

(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正确的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山坡上有一颗树AB,树底部B点到山脚C点的距离BC为6 米,山坡的坡角为30°,小宇在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将 ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将 CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的个数有( ).

CMP∽ BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2
⑤当 ABP≌ AND时,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.

x(元∕件)

15

18

20

22

y(件)

250

220

200

180

按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC内部作正方形D1E1F1G1 , 其中点D1 , E1分别在AC,BC边上,边F1G1在BC上,它的面积记作S1;按同样的方法在△CD1E1内部作正方形D2E2F2G2 , 它的面积记作S2 , S2= , …,照此规律作下去,正方形DnEnFnGn的面积Sn=

查看答案和解析>>

同步练习册答案