精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,结论:①ac<0;②a﹣b+c<0;③b2﹣4ac≥0;④y随x的增大而增大,其中正确的个数(

A.4个
B.3个
C.2个
D.1个

【答案】C
【解析】解:①∵抛物线开口向下,
∴a<0;
∵抛物线与y轴交点在y轴正半轴,
∴b>0,
∴ab<0,①正确;
②∵抛物线对称轴0<x=﹣ <1,且当x=1时,y<0,
∴当x=﹣1时,y<0,
∴a﹣b+c<0,②正确;
③∵抛物线与x轴有两个不同的交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,③错误;
④根据二次函数图象可知:在对称轴左边y随x的增大而增大,在对称轴右边y随x的增大而减小,
∴④错误.
综上可知:正确的结论有①②.
故选C.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点出发以每秒个单位的速度在线段上从点向点运动,点同时从出发以每秒个单位的速度在线段上向点运动,连接,设两点运动时间为.

(1)运动   秒时,

(2)运动多少秒时,能成立;

(3),求的大小.(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a+2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2
上述4个判断中,正确的是(

A.①②
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,点D的坐标是(0, ),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.

(1)求A,B,C三点的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是等边三角形ABC内的一点,∠AOB=130°,BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.

(1)判断△COD的形状,并加以说明理由.

(2)若AD=1,OC=,OA=时,求α的度数.

(3)探究:当α为多少度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元函数y=﹣2x+m和反比例函数y= 的图象都经过点A(﹣2,1).
(1)求一次函数和反比例函数的解析式;
(2)求一次函数与反比例函数的另一个交点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣2)2+( 0 ﹣( 1
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED为菱形;
(2)连接AE、BE,AE与BE相等吗?请说明理由.

查看答案和解析>>

同步练习册答案