【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【解析】
试题分析:根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD. ∵将等边△ABC绕点C顺时针旋转120°得到△EDC, ∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE, ∴∠ACD=120°﹣60°=60°, ∴△ACD是等边三角形,
∴AC=AD,AC=AD=DE=CE, ∴四边形ACED是菱形,
∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD, ∴AB=BC=CD=AD,
∴四边形ABCD是菱形, ∴BD⊥AC,∴①②③都正确
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△OAB的顶点B在x轴的正半轴上,已知∠OBA=90°,OB=3,sin∠AOB=.反比例函数y=(x>0)的图象经过点A.
(1)求反比例函数的解析式;
(2)若点C(m,2)是反比例函数y=(x>0)图象上的点,则在x轴上是否存在点P,使得PA+PC最小?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起,若固定三角形AOB,改变三角形ACD的位置(其中点A位置始终不变),可以摆成不同的位置,使两块三角板至少有一组边平行.设∠BAD=α(0°<α<180°)
(1)如图2中,请你探索当α为多少时,CD∥OB,并说明理由;
(2)如图3中,当α=时,AD∥OB;
(3)在点A位置始终不变的情况下,你还能摆成几种不同的位置,使两块三角板中至少有一组边平行,请直接写出符合要求的α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | a |
第4组 | 140≤x<160 | 18 |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)表中的a=;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第组;
(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:
报名人数分布直方图 报名人数扇形统计图
(1)求该年级报名参加本次活动的总人数;
(2)求该年级报名参加乙组的人数,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把代数式3x3-12x2+12x分解因式,结果正确的是 ( )
A. 3x(x2-4x+4) B. 3x(x-4)2
C. 3x(x+2)(x-2) D. 3x(x-2)2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com