【题目】如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,给出下列结论:①AC⊥CD;②∠CAD=30°;③OB⊥AC;④CD=2OP.其中正确的个数为( )
A.4个B.3个C.2个D.1个
【答案】A
【解析】
利用直径所对的圆周角是直角判断①,利用四边形OBCD是平行四边形证明是等边三角形,可判断②,利用平行四边形与结论①,可判断③,利用中位线的性质可判断④.
∵AD是⊙O的直径,
∴∠ACD=90°,
∴AC⊥CD,故①正确;
如图,连接OC,
∵四边形OBCD是平行四边形,
∴BC=OD,OB=CD
∵OB=OC=OD,
∴OB=OC=BC=OD=CD,
∴△BOC与△COD均为等边三角形,
∴∠COD=60°,∠BOC=60°,
∴∠CAD=∠COB=30°,故②正确;
∵四边形OBCD是平行四边形,
∴OB∥CD,
∵AC⊥CD,
∴OB⊥AC,故③正确;
∵OB⊥AC,
∴CP=AP,
又∵OA=OD,
∴CD=2OP,故④正确.
综上,正确的有①②③④.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且.
(1)求抛物线的函数关系式;
(2)若P是抛物线上且位于直线上方的一动点,求的面积的最大值及此时点P的坐标;
(3)在线段上是否存在一点M,使的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知直角三角形ABC的顶点A的坐标为(-2,1),顶点B的坐标为(-5,4),将△ABC向右平移5个单位,再向下平移3个单位后得到.
(1)请直接写出点C的坐标;
(2)请画出;
(3)若点P在x轴上,且与△ABC的面积相等,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,为放置在水平桌面上的台灯,底座的高为.长度均为的连杆,与始终在同一水平面上.
(1)旋转连杆,,使成平角,,如图2,求连杆端点离桌面的高度.
(2)将(1)中的连杆绕点逆时针旋转,使,如图3,问此时连杆端点离桌面的高度是增加了还是减少?增加或减少了多少?(精确到,参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等边三角形, M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.
(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.
(2)如图②,若∠BMC = n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数和一次函数y=kx-1的图象相交于A(m,2m),B两点.
(1)求一次函数的表达式;
(2)求出点B的坐标,并根据图象直接写出满足不等式的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=5,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为( )
A.10B.8C.6D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象经过点A(4,0),C(0,2).
(1)求抛物线的表达式;
(2)如图1,点E是第一象限的抛物线上的一个动点.当△ACE面积最大时,请求出点E的坐标;
(3)如图2,在抛物线上是否存在一点P,使∠CAP=45°?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD是△ABC的角平分线,点E、F分别在AB、BC上,且ED//BC,EF//AC.
(1)求证:BE=DE;
(2)当AB=AC时,试说明四边形EFCD为菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com