精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=3,点D是边AB上的动点(点D与点A、B不重合),过点D作DE⊥AB交射线AC于E,连接BE,点F是BE的中点,连接CD、CF、DF.
(1)当点E在边AC上(点E与点C不重合)时,设AD=x,CE=y.
①直接写出y关于x的函数关系式及定义域;
②求证:△CDF是等边三角形;
(2)如果BE=2
7
,请直接写出AD的长.
分析:(1)①根据30°角所对的直角边等于斜边的一半可得AE=2AD,然后再根据AC=3进行解答即可;
②先根据直角三角形斜边上的中线等于斜边的一半得到CF=DF=
1
2
BE,再根据三角形的一个外角等于与它不相邻的两个内角的和得到∠DFC=2∠ABC=60°,然后即可证明是等边三角形;
(2)先求出BC的长度,在△BEC中,再利用勾股定理求出CE=1,再分点E在AC上与在射线AC上两种情况求解.
解答:解:(1)①∵∠A=60°,DE⊥AB,
∴∠AED=90°-60°=30°,
∴AE=2AD=2x,
又AC=AE+CE,
即3=2x+y,
∴y=-2x+3;定义域:0<x<
3
2
;…(2分)
②证明:在Rt△ECB和Rt△EDB中,∠ECB=∠EDB=90°.
∵点F是BE的中点,
CF=DF=
1
2
BE=BF
.…(1分)
∴∠FCB=∠CBF,∠FDB=∠DBF.…(1分)
∴∠CFE=2∠CBF,∠DFE=2∠DBF.
∴∠CFE+∠DFE=2(∠CBF+∠DBF).
即∠CFD=2∠CBA.…(1分)
∵∠A=60°,∴∠ABC=90°-60°=30°.
∴∠CFD=60°.…(1分)
∴△CDF是等边三角形.…(1分)

(2)∵∠ACB=90°,∠A=60°,AC=3,
∴BC=3tan60°=3
3

在Rt△BCE中,CE=
BE2-BC2
=
(2
7
)
2
-(3
3
)
2
=1,
当点E在AC上时,AD=
1
2
AE=
1
2
(3-1)=1,
当点E在射线AC上时,AD=
1
2
AE=
1
2
(3+1)=2,
∴AD的长是1或2.  …(一解正确得2分;两解正确得3分)
点评:本题主要考查了30°角所对的直角边等于斜边的一半的性质,勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,以及等边三角形的判定,综合性较强,只要仔细分析也不难解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案