【题目】已知是⊙的直径,是⊙的切线,,交⊙于点,是上一点,延长交⊙于点.
(1)如图①,求和的大小;
(2)如图②,当时,求的大小.
【答案】(1) ∠T=40°,∠CDB=40°;(2)∠CDO =15°.
【解析】
试题分析:(1)如图,连接AC,根据切线的性质定理可得∠TAB=90°,即可求得∠T的度数;根据直径所对的圆周角为直角可得∠ACB=90°,即可求得∠CDO的度数. (2)如图,连接AD,在△BCE中,求得∠BCE=∠BEC=65°,根据圆周角定理的推论可得∠BAD=∠BCD=65°,因OA=OD,根据等腰三角形的性质可得∠ODA=∠OAD=65°,即可得∠CDO=∠ODA-∠ADC=15°.
试题解析:(1)如图,连接AC,
∵是⊙的直径,是⊙的切线,
∴AT⊥AB,即∠TAB=90°.
∵,
∴∠T=90°-∠ABT=40°
由是⊙的直径,得∠ACB=90°,
∴∠CAB=90°-∠ABC=40°
∴∠CDB=∠CAB=40°;
(2)如图,连接AD,
在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°
∵OA=OD
∴∠ODA=∠OAD=65°
∵∠ADC=∠ABC=50°
∴∠CDO=∠ODA-∠ADC=15°.
科目:初中数学 来源: 题型:
【题目】在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为 人,扇形统计图中,希望参加活动D所占圆心角为 度,根据题中信息补全条形统计图.
(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a.请用a、b式子分别表示第二边和第三边,并求这个三角形的周长(最后结果都要求最简)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com