如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.
(1)求证:
;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
![]()
考点:
相似形综合题.
分析:
(1)由相似三角形,列出比例关系式,即可证明;
(2)首先求出矩形EFPQ面积的表达式,然后利用二次函数求其最大面积;
(3)本问是运动型问题,要点是弄清矩形EFPQ的运动过程:
(I)当0≤t≤2时,如答图①所示,此时重叠部分是一个矩形和一个梯形;
(II)当2<t≤4时,如答图②所示,此时重叠部分是一个三角形.
解答:
(1)证明:∵矩形EFPQ,
∴EF∥BC,∴△AHF∽△ADC,∴
,
∵EF∥BC,∴△AEF∽△ABC,∴
,
∴
.
(2)解:∵∠B=45°,∴BD=AD=4,∴CD=BC﹣BD=5﹣4=1.
∵EF∥BC,∴△AEH∽△ABD,∴
,
∵EF∥BC,∴△AFH∽△ACD,∴
,
∴
,即
,∴EH=4HF,
已知EF=x,则EH=x.
∵∠B=45°,∴EQ=BQ=BD﹣QD=BD﹣EH=4﹣x.
S矩形EFPQ=EF•EQ=x•(4﹣x)=﹣x2+4x=﹣(x﹣)2+5,
∴当x=时,矩形EFPQ的面积最大,最大面积为5.
(3)解:由(2)可知,当矩形EFPQ的面积最大时,矩形的长为,宽为4﹣×=2.
在矩形EFPQ沿射线AD的运动过程中:
(I)当0≤t≤2时,如答图①所示.
![]()
设矩形与AB、AC分别交于点K、N,与AD分别交于点H1,D1.
此时DD1=t,H1D1=2,
∴HD1=HD﹣DD1=2﹣t,HH1=H1D1﹣HD1=t,AH1=AH﹣HH1=2﹣t,.
∵KN∥EF,∴
,即
,得KN=(2﹣t).
S=S梯形KNFE+S矩形EFP1Q1=(KN+EF)•HH1+EF•EQ1
= [(2﹣t)+]×t+(2﹣t)
=
t2+5;
(II)当2<t≤4时,如答图②所示.
![]()
设矩形与AB、AC分别交于点K、N,与AD交于点D2.
此时DD2=t,AD2=AD﹣DD2=4﹣t,
∵KN∥EF,∴
,即
,得KN=5﹣t.
S=S△AKN=KN•AD2
=(5﹣t)(4﹣t)
=t2﹣5t+10.
综上所述,S与t的函数关系式为:
S=
.
点评:
本题是运动型相似三角形压轴题,考查了相似三角形的判定与性质、二次函数的表达式与最值、矩形、等腰直角三角形等多个知识点,涉及考点较多,有一定的难度.难点在于第(3)问,弄清矩形的运动过程是解题的关键.
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com